Experimental Brain Research

, Volume 203, Issue 3, pp 485–498 | Cite as

Interaction between gaze and visual and proprioceptive position judgements

  • Katja Fiehler
  • Frank Rösler
  • Denise Y. P. Henriques
Research Article


There is considerable evidence that targets for action are represented in a dynamic gaze-centered frame of reference, such that each gaze shift requires an internal updating of the target. Here, we investigated the effect of eye movements on the spatial representation of targets used for position judgements. Participants had their hand passively placed to a location, and then judged whether this location was left or right of a remembered visual or remembered proprioceptive target, while gaze direction was varied. Estimates of position of the remembered targets relative to the unseen position of the hand were assessed with an adaptive psychophysical procedure. These positional judgements significantly varied relative to gaze for both remembered visual and remembered proprioceptive targets. Our results suggest that relative target positions may also be represented in eye-centered coordinates. This implies similar spatial reference frames for action control and space perception when positions are coded relative to the hand.


Multisensory Perception and action Reference frames Remapping Space Updating 



This research was supported by grant Fi 1567/2-2 from the German Research Foundation (DFG) assigned to Katja Fiehler and Frank Rösler, the DFG research unit FOR 560 ‘Perception and Action' and by the TransCoop-Program from the Alexander von Humboldt Foundation assigned to Katja Fiehler and Denise Y.P. Henriques. We thank Patricia Franke for her help in collecting and analyzing data, Oguz Balandi for programming the experiment and Johanna Reuschel for supporting the artwork.


  1. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458CrossRefPubMedGoogle Scholar
  2. Arbib MA (1991) Interaction of multiple representations of space in the brain. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 379–403Google Scholar
  3. Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260CrossRefPubMedGoogle Scholar
  4. Blangero A, Rossetti Y, Honore J, Pisella L (2005) Influence of gaze direction on pointing to unseen proprioceptive targets. Adv Cogn Psychol 1:9–16CrossRefGoogle Scholar
  5. Blangero A, Ota H, Revol P, Vindras P, Rode G, Boisson D, Vighetto A, Rossetti Y, Pisella L (2007) Optic ataxia is not only ‚optic’: impaured spatial integration of proprioceptive information. Neuroimage 36:T61–T68CrossRefPubMedGoogle Scholar
  6. Blangero A, Ota H, Rossetti Y, Fujii T, Ohtake H, Tabuchi M, Vighetto A, Yamadori A, Vindras P, Pisella L (2010) Systematic retinotopic reaching error vectors in unilateral optic ataxia. Cortex 46:77–93CrossRefPubMedGoogle Scholar
  7. Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64:476–482CrossRefPubMedGoogle Scholar
  8. Brotchie PR, Andersen RA, Snyder H, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375:232–235CrossRefPubMedGoogle Scholar
  9. Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636CrossRefPubMedGoogle Scholar
  10. Chieffi A, Allport DS (1997) Independent coding of target distance and direction in visuo-spatial working memory. Psychol Res 60:244–250CrossRefPubMedGoogle Scholar
  11. Chieffi S, Allport DA, Woodin M (1999) Hand-centered coding of target location in visuo-spatial working memory. Neuropsychol 37:495–502CrossRefGoogle Scholar
  12. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562CrossRefPubMedGoogle Scholar
  13. Colby CL, Duhamel JR, Goldberg ME (1995) Oculocentric spatial representation in parietal cortex. Cereb Cortex 5:470–481CrossRefPubMedGoogle Scholar
  14. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212CrossRefPubMedGoogle Scholar
  15. Culham JC, Gallivan J, Cavina-Pratesi C, Quinlan DJ (2007) fMRI investigations of reaching and ego space in human superior parieto-occipital cortex. In: Klatzky RL, Behrmann M, MacWhinney B (eds) Embodiment, ego-space and action. Psychology Press, New York, pp 247–274Google Scholar
  16. Desmurget M, Vindras P, Greá H, Viviani P, Grafton ST (2000) Proprioception does not quickly drift during visual occlusion. Exp Brain Res 134:363–377CrossRefPubMedGoogle Scholar
  17. Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92CrossRefPubMedGoogle Scholar
  18. Eggert T, Ditterich J, Straube A (2001) Mislocalization of peripheral targets during fixation. Vis Res 41:343–352CrossRefPubMedGoogle Scholar
  19. Fiehler K, Burke M, Engel A, Bien S, Rösler F (2008) Kinesthetic working memory and action control within the dorsal stream. Cereb Cortex 18:243–253CrossRefPubMedGoogle Scholar
  20. Flanders M, Helms Tillery SI, Soechting JF (1992) Early stages in a sensorimotor transformation. Behav Brain Sci 15:309–362Google Scholar
  21. Goldberg ME, Bruce CJ (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J Neurophysiol 64:489–508PubMedGoogle Scholar
  22. Goodale MA, Westwood DA, Milner AD (2004) Two distinct modes of control for object-directed action. Prog Brain Res 144:131–144CrossRefPubMedGoogle Scholar
  23. Harrar V, Harris LR (2009) Eye position affects the perceived location of touch. Exp Brain Res 198:403–410CrossRefPubMedGoogle Scholar
  24. Henriques DYP, Crawford JD (2002) Role of eye, head and shoulder geometry in the planning of accurate arm movements. J Neurophysiol 87:1677–1685PubMedGoogle Scholar
  25. Henriques DYP, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594PubMedGoogle Scholar
  26. Jackson SR, Newport R, Husain M, Fowlie JE, O’Donoghue M, Bajaj N (2009) There may be more to reaching than meets the eye: re-thinking optic ataxia. Neuropsychologia 47:1397–1408CrossRefPubMedGoogle Scholar
  27. Kesten H (1958) Accelerated stochastic approximation. Ann Math Statist 29:41–59CrossRefGoogle Scholar
  28. Khan AZ, Pisella L, Vighetto A, Cotton F, Luaute J, Boisson D, Salemme R, Crawford JD, Rossetti Y (2005a) Optic ataxia errors depend on remapped, not viewed, target location. Nat Neurosci 8:418–420PubMedGoogle Scholar
  29. Khan AZ, Pisella L, Rossetti Y, Vighetto A, Crawford JD (2005b) Impairment of gaze-centered updating of reach targets in bilateral parietal-occipital damaged patients. Cereb Cortex 15:1547–1560CrossRefPubMedGoogle Scholar
  30. Klier EM, Angelaki DE (2008) Spatial updating and the maintenance of visual constancy. Neurosci 156:801–818CrossRefGoogle Scholar
  31. Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807CrossRefPubMedGoogle Scholar
  32. Lewald J (1998) The effect of gaze eccentricity on perceived sound direction and its relation to visual localization. Hearing Res 115:206–216CrossRefGoogle Scholar
  33. Lewald J, Ehrenstein WH (1996a) Auditory-visual shift in localization depending on gaze direction. Neuroreport 7:1929–1932CrossRefPubMedGoogle Scholar
  34. Lewald J, Ehrenstein WH (1996b) The effect of eye position on auditory lateralization. Exp Brain Res 108:473–485CrossRefPubMedGoogle Scholar
  35. Mays LE, Sparkes DL (1980) Saccades are spatially, not retinocentrically, coded. Science 208:1163–1165CrossRefPubMedGoogle Scholar
  36. McGuire LMM, Sabes PN (2009) Sensory transformations and the use of multiple reference frames for reach planning. Nat Neurosci 12:1056–1061CrossRefPubMedGoogle Scholar
  37. Medendorp WP, Crawford JD (2002) Visuospatial updating of reaching targets in near and far space. Neuroreport 13:633–636CrossRefPubMedGoogle Scholar
  38. Medendorp WP, Goltz HC, Vilis T (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:6209–6214PubMedGoogle Scholar
  39. Medendorp WP, Goltz HC, Crawford JD, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94:734–740CrossRefPubMedGoogle Scholar
  40. Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373CrossRefPubMedGoogle Scholar
  41. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychol 9:97–113CrossRefGoogle Scholar
  42. Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: an event-related fMRI study. Neuropsychologia 44:2685–2690CrossRefPubMedGoogle Scholar
  43. Pouget A, Ducom JC, Torri J, Bavelier D (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83:B1–B11CrossRefPubMedGoogle Scholar
  44. Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin M-T (2005) Two cortical systems for reaching in central and peripheral vision. Neuron 48:849–858CrossRefPubMedGoogle Scholar
  45. Reuschel J, Drewing K, Henriques DYP, Rösler F, Fiehler K (2010) Optimal integration of visual and proprioceptive movement information along angular trajectories. Exp Brain Res 201:853–862CrossRefPubMedGoogle Scholar
  46. Robins H, Monro S (1951) A stochastic approximation method. Ann Math Statist 22:400–407CrossRefGoogle Scholar
  47. Sarlegna FR, Sainburg RL (2007) The effect of target modality on visual and proprioceptive contributions to the control of movement distance. Exp Brain Res 176:267–280CrossRefPubMedGoogle Scholar
  48. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354CrossRefPubMedGoogle Scholar
  49. Soechting JF, Flanders M, Helms Tillery SI (1991) Transformation from head- to shoulder-centered representation of target direction in arm movements. J Cognit Neurosci 2:32–43CrossRefGoogle Scholar
  50. Sorrento GU, Henriques DYP (2008) Reference frame conversions for repeated arm movements. J Neurophysiol 99:2968–2984CrossRefPubMedGoogle Scholar
  51. Thompson AA, Henriques DYP (2008) Updating visual memory across eye movements for ocular and arm motor control. J Neurophysiol 100:2507–2514CrossRefPubMedGoogle Scholar
  52. Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503–2522PubMedGoogle Scholar
  53. Van Beers RJ, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377CrossRefPubMedGoogle Scholar
  54. Van Pelt S, Medendorp WP (2007) Gaze-centered updating of remembered visual space during active whole body translations. J Neurophysiol 97:1209–1220CrossRefPubMedGoogle Scholar
  55. Wolbers T, Hegarty M, Buchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223–1230CrossRefPubMedGoogle Scholar
  56. Jones S, Henriques DYP (submitted) Memory for proprioceptive and multisensory targets is coded relative to gazeGoogle Scholar
  57. Zhang M, Barash S (2004) Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. J Neurophysiol 91:1424–1441CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Katja Fiehler
    • 1
  • Frank Rösler
    • 1
  • Denise Y. P. Henriques
    • 2
  1. 1.Department of Experimental and Biological PsychologyPhilipps-University MarburgMarburgGermany
  2. 2.School of Kinesiology and Health Science, Center for Vision ResearchYork UniversityTorontoCanada

Personalised recommendations