Experimental Brain Research

, Volume 203, Issue 1, pp 31–38 | Cite as

Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) during capsaicin-induced pain: modulatory effects on motor cortex excitability

  • Brigida Fierro
  • Marina De Tommaso
  • Francesca Giglia
  • Giuseppe Giglia
  • Antonio Palermo
  • Filippo Brighina
Research Article


Evidence by functional imaging studies suggests the role of left DLPFC in the inhibitory control of nociceptive transmission system. Pain exerts an inhibitory modulation on motor cortex, reducing MEP amplitude, while the effect of pain on motor intracortical excitability has not been studied so far. In the present study, we explored in healthy subjects the effect of capsaicin-induced pain and the modulatory influences of left DLPFC stimulation on motor corticospinal and intracortical excitability. Capsaicin was applied on the dorsal surface of the right hand, and measures of motor corticospinal excitability (test-MEP) and short intracortical inhibition (SICI) and facilitation (ICF) were obtained by paired-pulse TMS on left motor cortex. Evaluations were made before and at different times after capsaicin application in two separate sessions: without and with high-frequency rTMS of left DLPF cortex, delivered 10 min. after capsaicin application. We performed also two control experiments to explore: 1: the effects of Left DLPFC rTMS on capsaicin-induced pain; 2: the modulatory influence of left DLPFC rTMS on motor cortex without capsaicin application. Capsaicin-induced pain significantly reduced test MEP amplitude and decreased SICI leaving ICF unchanged. Left DLPFC rTMS, together with the analgesic effect, was able to revert the effects of capsaicin-induced pain on motor cortex restoring normal MEP and SICI levels. These data support the notion that that tonic pain exerts modulatory influence on motor intracortical excitability; the activation of left DLPFC by hf rTMS could have analgesic effects, reverting also the motor cortex excitability changes induced by pain stimulation.


rTMS Capsaicin Pain DLPFC Motor cortical excitability Intracortical inhibition Intracortical facilitation 


  1. Avery DH, Isenberg KE, Sampson SM, Janicak PG, Lisanby SH, Maixner DF, Loo C, Thase ME, Demitrack MA, George MS (2008) Transcranial magnetic stimulation in the acute treatment of major depressive disorder: clinical response in an open-label extension trial. J Clin Psychiatry 69:441–451CrossRefPubMedGoogle Scholar
  2. Baumann TK, Simone DA, Shain CN, LaMotte RH (1991) Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J Neurophysiol 66:212–227PubMedGoogle Scholar
  3. Borckardt JJ, Smith AR, Reeves ST, Weinstein M, Kozel FA, Nahas Z, Shelley N, Branham RK, Thomas KJ, George MS (2007) Fifteen minutes of left prefrontal repetitive transcranial magnetic stimulation acutely increases thermal pain thresholds in healthy adults. Pain Res Manag 12:287–290PubMedGoogle Scholar
  4. Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, Fierro B (2004) rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J Neurol Sci 227:67–71CrossRefPubMedGoogle Scholar
  5. Brunelin J, Poulet E, Boeuve C, Zeroug-vial H, d’Amato T, Saoud M (2007) Efficacy of repetitive transcranial magnetic stimulation (rTMS) in major depression: a review. Encephale 33:126–134CrossRefPubMedGoogle Scholar
  6. Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71:802–807PubMedGoogle Scholar
  7. Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur JP, Simpson BA, Taylor RS (2007) EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 14:952–970CrossRefPubMedGoogle Scholar
  8. Farina S, Valeriani M, Rosso T, Aglioti S, Tamburin S, Fiaschi A, Tinazzi M (2001) Transient inhibition of the human motor cortex by capsaicin-induced pain. A study with transcranial magnetic stimulation. Neurosci Lett 314:97–101CrossRefPubMedGoogle Scholar
  9. Finocchiaro C, Maimone M, Brighina F, Piccoli T, Giglia G, Fierro B (2006) A case study of primary progressive aphasia: improvement on verbs after rTMS treatment. Neurocase 12:317–321CrossRefPubMedGoogle Scholar
  10. Fregni F, Freedman S, Pascual-Leone A (2007) Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 6:188–191CrossRefPubMedGoogle Scholar
  11. Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Raven, New YorkGoogle Scholar
  12. García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, Convers P, Mauguière F, Sindou M, Laurent B (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83:259–273CrossRefPubMedGoogle Scholar
  13. Giglia F, De Tommaso M, Brighina F, Palermo A, Panetta ML, Puma A, Cosentino G, Giglia G, Fierro B (2008) Modulation of dorsolateral prefrontal cortex (DLPFC) through repetitive transcranial magnetic stimulation (rTMS) during capsaicin induced pain: effects on nociceptive control and motor cortical circuits. Eur J Neurol 15 (Suppl. 3)11: SC110Google Scholar
  14. Graff-Guerrero A, González-Olvera J, Fresán A, Gómez-Martín D, Méndez-Núñez JC, Pellicer F (2005) Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Brain Res Cogn Brain Res 25:153–160CrossRefPubMedGoogle Scholar
  15. Grönroos M, Pertovaara A (1993) Capsaicin-induced central facilitation of a nociceptive flexion reflex in humans. Neurosci Lett 159:215–218CrossRefPubMedGoogle Scholar
  16. Hadjipavlou G, Dunckley P, Behrens TE, Tracey I (2006) Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 123:169–178CrossRefPubMedGoogle Scholar
  17. Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB, Bennett GJ (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121:931–947CrossRefPubMedGoogle Scholar
  18. Ili’c TV, Meintzschel F, CleV U, Ruge D, Kessler KR (2002) Ziemann U Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545:153–167CrossRefGoogle Scholar
  19. Kanda M, Mima T, Oga T, Matsuhashi M, Toma K, Hara H, Satow T, Nagamine T, Rothwell JC, Shibasaki H (2003) Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clin Neurophysiol 114(5):860–866CrossRefPubMedGoogle Scholar
  20. Katayama Y, Fukaya C, Yamamoto T (1998) Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J Neurosurg 89:585–591CrossRefPubMedGoogle Scholar
  21. Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP (2001) Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport. 12:2963–2965CrossRefPubMedGoogle Scholar
  22. Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP (2006) Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67:1568–1574CrossRefPubMedGoogle Scholar
  23. Leo RJ, Latif T (2007) Repetitive transcranial magnetic stimulation (rTMS) in experimentally induced and chronic neuropathic pain: a review. J Pain 8:453–459CrossRefPubMedGoogle Scholar
  24. Lorenz J, Cross DJ, Minoshima S, Morrow TJ, Paulson PE, Casey KL (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383–393CrossRefPubMedGoogle Scholar
  25. Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126:1079–1091CrossRefPubMedGoogle Scholar
  26. Migita K, Uozumi T, Arita K, Monden S (1995) Transcranial magnetic coil stimulation of motor cortex in patients with central pain. Neurosurgery 36:1037–1039CrossRefPubMedGoogle Scholar
  27. Mylius V, Reis J, Kunz M, Beyer TF, Oertel WH, Rosenow F, Schepelmann K (2006) Modulation of electrically induced pain by paired pulse transcranial magnetic stimulation of the medial frontal cortex. Clin Neurophysiol 117:1814–1820CrossRefPubMedGoogle Scholar
  28. Mylius V, Reis J, Knaack A, Haag A, Oertel WH, Rosenow F, Schepelmann K (2007) High-frequency rTMS of the motor cortex does not influence the nociceptive flexion reflex but increases the unpleasantness of electrically induced pain. Neurosci Lett 415:49–54CrossRefPubMedGoogle Scholar
  29. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, Theoret H, Fregni F, Maria-Tormos J, Kurland J, Doron KW, Pascual-Leone A (2005) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 93:95–105CrossRefPubMedGoogle Scholar
  30. Nguyen JP, Keravel Y, Feve A, Uchiyama T, Cesaro P, Le Guerinel C (1997) Pollin B. Treatment of deafferentation pain by chronic stimulation of the motor cortex: report of a series of 20 cases. Acta Neurochir Suppl 68:54–60PubMedGoogle Scholar
  31. O’Reardon JP, Fontecha JF, Cristancho MA, Newman S (2007) Unexpected reduction in migraine and psychogenic headaches following rTMS treatment for major depression: a report of two cases. CNS Spectr 12:921–925PubMedGoogle Scholar
  32. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15:333–343CrossRefPubMedGoogle Scholar
  33. Paus T, Castro-Alamancos MA, Petrides M (2001) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14:1405–1411CrossRefPubMedGoogle Scholar
  34. Peyron R, Garcia-Larrea L, Deiber MP, Cinotti L, Convers P, Sindou M, Mauguière F, Laurent B (1995) Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study. Pain 62:275–286CrossRefPubMedGoogle Scholar
  35. Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288CrossRefPubMedGoogle Scholar
  36. Pridmore S, Samilowitz H (2003) The brain and chronic pain. J Psychiatry 6:8–15Google Scholar
  37. Rudiak D, Marg E (1994) Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol 93:358–371CrossRefPubMedGoogle Scholar
  38. Salako SE (2006) The declaration of Helsinki 2000: ethical principles and the dignity of difference. Med Law 25:341–354PubMedGoogle Scholar
  39. Sampson SM, Rome JD, Rummans TA (2006) Slow-frequency rTMS reduces fibromyalgia pain. Pain Med 7:115–118CrossRefPubMedGoogle Scholar
  40. Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk E, Handwerker H (1995) Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15:333–341PubMedGoogle Scholar
  41. Tamura Y, Okabe S, Ohnishi T, Saito DN, Arai N, Mochio S, Inoue K, Ugawa Y (2004a) Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain 107:107–115CrossRefPubMedGoogle Scholar
  42. Tamura Y, Hoshiyama M, Inui K, Nakata H, Qiu Y, Ugawa Y, Inoue K, Kakigi R (2004b) Facilitation of A[delta]-fiber-mediated acute pain by repetitive transcranial magnetic stimulation. Neurology 62:2176–2181PubMedGoogle Scholar
  43. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien) 52:137–139Google Scholar
  44. Wood JN, Grafman J (2003) Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 4:139–147CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Brigida Fierro
    • 1
  • Marina De Tommaso
    • 2
  • Francesca Giglia
    • 1
  • Giuseppe Giglia
    • 1
  • Antonio Palermo
    • 1
  • Filippo Brighina
    • 1
  1. 1.Department of Clinical NeurosciencesUniversity of PalermoPalermoItaly
  2. 2.Neurological and Psychiatric Sciences DepartmentUniversity of BariBariItaly

Personalised recommendations