Experimental Brain Research

, Volume 203, Issue 1, pp 21–30 | Cite as

Reactive grip force control in persons with cerebellar stroke: effects on ipsilateral and contralateral hand

  • Elisabeth Anens
  • Bo Kristensen
  • Charlotte Häger-RossEmail author
Research Article


This study investigates the cerebellar contribution to reactive grip control by examining differences between (22–48 years) subjects with focal cerebellar lesion due to ischaemic stroke (CL) and healthy subjects (HS). The subjects used a pinch grip to grasp and restrain an instrumented handle from moving when it was subject to unpredictable load forces of different rates (2, 4, 8, 32 N/s) or amplitudes (1, 2, 4 N). The hand ipsilateral to the lesion of the cerebellar subjects showed delayed and more variable response latencies, e.g., 278 ± 162 ms for loads delivered at 2 N/s, compared to HS 180 ± 53 ms (P = 0.005). The CL also used a higher pre-load grip force with the ipsilateral hand, 1.6 ± 0.8 N, than the HS, 1.3 ± 0.6 N (P = 0.017). In addition, the contralateral hand in subjects with unilateral cerebellar stroke showed a delayed onset of the grip response compared to HS. Cerebellar lesions thus impair the reactive grip control both in the ipsilateral and contralateral hand.


Cerebellum Latency Motor control Reactive control Unilateral cerebellar lesion 



We thank all subjects who participated in the study. Financial support was provided from Vårdalstiftelsen which is gratefully acknowledged.


  1. Babin-Ratte S, Sirigu A, Gilles M et al (1999) Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Exp Brain Res 128(1–2):81–85CrossRefPubMedGoogle Scholar
  2. Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649CrossRefPubMedGoogle Scholar
  3. Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153(2):239–245CrossRefPubMedGoogle Scholar
  4. Brandauer B, Hermsdorfer J, Beck A et al (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119(11):2528–2537CrossRefPubMedGoogle Scholar
  5. Cole KJ, Rotella DL (2001) Old age affects fingertip forces when restraining an unpredictably loaded object. Exp Brain Res 136(4):535–542CrossRefPubMedGoogle Scholar
  6. Cui SZ, Li EZ, Zang YF et al (2000) Both sides of human cerebellum involved in preparation and execution of sequential movements. Neuroreport 11(17):3849–3853PubMedCrossRefGoogle Scholar
  7. Danion F (2007) The contribution of non-digital afferent signals to grip force adjustments evoked by brisk unloading of the arm or the held object. Clin Neurophysiol 118(1):146–154CrossRefPubMedGoogle Scholar
  8. Ebner TJ, Pasalar S (2008) Cerebellum predicts the future motor state. Cerebellum 7(4):583–588CrossRefPubMedGoogle Scholar
  9. Ehrsson HH, Fagergren A, Ehrsson GO et al (2007) Holding an object: neural activity associated with fingertip force adjustments to external perturbations. J Neurophysiol 97(2):1342–1352CrossRefPubMedGoogle Scholar
  10. Fellows SJ, Ernst J, Schwarz M et al (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112(10):1793–1802CrossRefPubMedGoogle Scholar
  11. Flanagan JR, Bowman MC, Johansson RS (2006) Control strategies in object manipulation tasks. Curr Opin Neurobiol 16(6):650–659CrossRefPubMedGoogle Scholar
  12. Häger-Ross C, Johansson RS (1996) Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res 110(1):131–141PubMedGoogle Scholar
  13. Häger-Ross C, Cole KJ, Johansson RS (1996) Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables. Exp Brain Res 110(1):142–150PubMedGoogle Scholar
  14. Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43(3):350–358CrossRefPubMedGoogle Scholar
  15. Immisch I, Quintern J, Straube A (2003) Unilateral cerebellar lesions influence arm movements bilaterally. Neuroreport 14(6):837–840CrossRefPubMedGoogle Scholar
  16. Johansson RS (1998) Sensory input and control of grip. Novartis Found Symp 218:45–59 (discussion 59–63)CrossRefPubMedGoogle Scholar
  17. Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3):550–564CrossRefPubMedGoogle Scholar
  18. Johansson RS, Häger C, Bäckström L (1992a) Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res 89(1):204–213CrossRefPubMedGoogle Scholar
  19. Johansson RS, Häger C, Riso R (1992b) Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Exp Brain Res 89(1):192–203CrossRefPubMedGoogle Scholar
  20. Johansson RS, Riso R, Häger C et al (1992c) Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp Brain Res 89(1):181–191CrossRefPubMedGoogle Scholar
  21. Kawato M, Kuroda T, Imamizu H et al (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188CrossRefPubMedGoogle Scholar
  22. Lynnette AJ, Lederman SJ (2006) Human hand function. Oxford University Press, New YorkGoogle Scholar
  23. Milner TE, Franklin DW, Imamizu H et al (2007) Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage 36(2):388–395CrossRefPubMedGoogle Scholar
  24. Nowak DA, Hermsdorfer J (2005) Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord 20(1):11–25CrossRefPubMedGoogle Scholar
  25. Nowak DA, Hermsdorfer J, Marquardt C et al (2002) Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res 145(1):28–39CrossRefPubMedGoogle Scholar
  26. Nowak DA, Hermsdorfer J, Rost K et al (2004) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3(4):227–235CrossRefPubMedGoogle Scholar
  27. Nowak DA, Topka H, Timmann D et al (2007) The role of the cerebellum for predictive control of grasping. Cerebellum 6(1):7–17CrossRefPubMedGoogle Scholar
  28. Nowak DA, Hufnagel A, Ameli M et al (2009) Interhemispheric transfer of predictive force control during grasping in cerebellar disorders. Cerebellum 8(2):108–115CrossRefPubMedGoogle Scholar
  29. Rost K, Nowak DA, Timmann D et al (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116(6):1405–1414CrossRefPubMedGoogle Scholar
  30. Serrien DJ, Wiesendanger M (1999) Grip-load force coordination in cerebellar patients. Exp Brain Res 128(1–2):76–80CrossRefPubMedGoogle Scholar
  31. Sosnoff JJ, Valantine AD, Newell KM (2006) Independence between the amount and structure of variability at low force levels. Neurosci Lett 392(3):165–169CrossRefPubMedGoogle Scholar
  32. Witney AG, Wing A, Thonnard JL et al (2004) The cutaneous contribution to adaptive precision grip. Trends Neurosci 27(10):637–643CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elisabeth Anens
    • 1
  • Bo Kristensen
    • 2
  • Charlotte Häger-Ross
    • 1
    • 3
    Email author
  1. 1.Department of Community Medicine and Rehabilitation, Section for PhysiotherapyUmeå UniversityUmeåSweden
  2. 2.Department of NeurologyUniversity Hospital of Aalborg/SkejbyÅrhusDenmark
  3. 3.Department of Integrative Medical Biology, Physiology SectionUmeå UniversityUmeåSweden

Personalised recommendations