Advertisement

Experimental Brain Research

, Volume 206, Issue 2, pp 109–120 | Cite as

Multiple reference frames used by the human brain for spatial perception and memory

  • Gaspare Galati
  • Gina Pelle
  • Alain Berthoz
  • Giorgia Committeri
Research Article

Abstract

We review human functional neuroimaging studies that have explicitly investigated the reference frames used in different cortical regions for representing spatial locations of objects. Beyond the general distinction between “egocentric” and “allocentric” reference frames, we provide evidence for the selective involvement of the posterior parietal cortex and associated frontal regions in the specific process of egocentric localization of visual and somatosensory stimuli with respect to relevant body parts (“body referencing”). Similarly, parahippocampal and retrosplenial regions, together with specific parietal subregions such as the precuneus, are selectively involved in a specific form of allocentric representation in which object locations are encoded relative to enduring spatial features of a familiar environment (“environmental referencing”). We also present a novel functional magnetic resonance imaging study showing that these regions are selectively activated, whenever a purely perceptual spatial task involves an object which maintains a stable location in space during the whole experiment, irrespective of its perceptual features and its orienting value as a landmark. This effect can be dissociated from the consequences of an explicit memory recall of landmark locations, a process that further engages the retrosplenial cortex.

Keywords

Spatial reference frames Functional neuroimaging Egocentric Allocentric Parahippocampal place area Retrosplenial cortex 

References

  1. Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17:2512–2518PubMedGoogle Scholar
  2. Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628PubMedCrossRefGoogle Scholar
  3. Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829PubMedCrossRefGoogle Scholar
  4. Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to ‘‘building’’ stimuli: evidence and implications. Neuron 21:373–383PubMedCrossRefGoogle Scholar
  5. Amorim MA, Glasauer S, Corpinot K, Berthoz A (1997) Updating an object’s orientation and location during nonvisual navigation: a comparison between two processing modes. Percept Psychophys 59:404–418PubMedGoogle Scholar
  6. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRefGoogle Scholar
  7. Andresen DR, Vinberg J, Grill-Spector K (2009) The representation of object viewpoint in human visual cortex. Neuroimage 45(2):522–536PubMedCrossRefGoogle Scholar
  8. Avidan G, Levy I, Hendler T, Zohary E, Malach R (2003) Spatial vs. object specific attention in high-order visual areas. Neuroimage 19:308–318PubMedCrossRefGoogle Scholar
  9. Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:e1000426PubMedCrossRefGoogle Scholar
  10. Bennett ADT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224PubMedGoogle Scholar
  11. Berthoz A (1997) Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 352:1437–1448PubMedCrossRefGoogle Scholar
  12. Biegler R, Morris RGM (1993) Landmark stability is a prerequisite for spatial but not discrimination-learning. Nature 361:631–633PubMedCrossRefGoogle Scholar
  13. Bisiach E (1997) The spatial features of unilateral neglect. In: Thier P, Karnath H-O (ed) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 465–495Google Scholar
  14. Brotchie PR, Lee MB, Chen DY, Lourensz M, Jackson G, Bradley WG Jr (2003) Head position modulates activity in the human parietal eye fields. Neuroimage 18:178–184PubMedCrossRefGoogle Scholar
  15. Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci 10:551–557PubMedCrossRefGoogle Scholar
  16. Burgess N (2008) Spatial cognition and the brain. Ann N Y Acad Sci 1124:77–97PubMedCrossRefGoogle Scholar
  17. Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:8–23PubMedCrossRefGoogle Scholar
  18. Chokron S (2003) Right parietal lesions, unilateral spatial neglect, and the egocentric frame of reference. Neuroimage 20:S75–S81PubMedCrossRefGoogle Scholar
  19. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562PubMedCrossRefGoogle Scholar
  20. Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535PubMedCrossRefGoogle Scholar
  21. Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, Castriota-Scanderbeg A, Piccardi L, Guariglia C, Pizzamiglio L (2007) Neural bases of personal and extrapersonal neglect in humans. Brain 130:431–441 Google Scholar
  22. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRefGoogle Scholar
  23. Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610PubMedCrossRefGoogle Scholar
  24. Critchley M (1953) The parietal lobes. Hafner Press, New YorkGoogle Scholar
  25. d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255PubMedCrossRefGoogle Scholar
  26. DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840PubMedGoogle Scholar
  27. DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12:991–997PubMedCrossRefGoogle Scholar
  28. Driver J (1999) Egocentric and object-based visual neglect. In: Burgess N, Jeffery KJ, O’Keefe J (eds) The hippocampal and parietal foundations of spatial cognition. Oxford University Press, Oxford, pp 67–89Google Scholar
  29. Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92PubMedCrossRefGoogle Scholar
  30. Duhamel J-R, Bremmer F, Ben Hamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848 Google Scholar
  31. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188PubMedCrossRefGoogle Scholar
  32. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525PubMedCrossRefGoogle Scholar
  33. Epstein RA, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693PubMedCrossRefGoogle Scholar
  34. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601PubMedCrossRefGoogle Scholar
  35. Epstein RA, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125PubMedCrossRefGoogle Scholar
  36. Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27:6141–6149PubMedCrossRefGoogle Scholar
  37. Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120:2013–2028PubMedCrossRefGoogle Scholar
  38. Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ (2000) Line bisection judgements implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54:1324–1331PubMedGoogle Scholar
  39. Fink GR, Marshall JC, Weiss PH, Stephan T, Grefkes C, Shah NJ, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517PubMedCrossRefGoogle Scholar
  40. Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995) The mind’s eye: precuneus activation in memory-related imagery. Neuroimage 2:195–200PubMedCrossRefGoogle Scholar
  41. Galati G, Lobel E, Berthoz A, Pizzamiglio L, Le Bihan D, Vallar G (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res 133:156–164PubMedCrossRefGoogle Scholar
  42. Galati G, Committeri G, Sanes JN, Pizzamiglio L (2001) Spatial coding of visual and somatic sensory information in body-centered coordinates. E J Neurosci 14:737–746CrossRefGoogle Scholar
  43. Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999PubMedCrossRefGoogle Scholar
  44. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002:870–878CrossRefGoogle Scholar
  45. Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus and insula. NeuroReport 8:739–744PubMedCrossRefGoogle Scholar
  46. Habib M, Sirigu A (1987) Pure topographical disorientation: a definition and anatomical basis. Cortex 23:73–85PubMedGoogle Scholar
  47. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRefGoogle Scholar
  48. Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888PubMedCrossRefGoogle Scholar
  49. Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041PubMedCrossRefGoogle Scholar
  50. Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254CrossRefGoogle Scholar
  51. Hillis AE, Rapp B (1998) Unilateral spatial neglect in dissociable frames of reference: a comment on Farah, Brunn, Wong, Wallace, and Carpenter (1990) Neuropsychologia 36:1257–1262Google Scholar
  52. Honda M, Wise SP, Weeks RA, Deiber M-P, Hallett M (1998) Cortical areas with enhanced activation during object-centred spatial information processing. Brain 121:2145–2158PubMedCrossRefGoogle Scholar
  53. Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23:5945–5952Google Scholar
  54. Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M (2007) Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 25:890–899PubMedCrossRefGoogle Scholar
  55. Iglói K, Zaoui M, Berthoz A, Rondi-Reig L (2009) Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus 19:1199–1211PubMedCrossRefGoogle Scholar
  56. Janzen G (2006) Memory for object location and route direction in virtual large-scale space. Q J Exp Psychol 59:493–508CrossRefGoogle Scholar
  57. Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677PubMedCrossRefGoogle Scholar
  58. Karnath HO (1997) Neural encoding of space in egocentric coordinates? In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 497–520Google Scholar
  59. Karnath H-O, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116:383–396PubMedCrossRefGoogle Scholar
  60. Kerkhoff G, Schindler I, Artinger F, Zoelch C, Bublak P, Finke K (2006) Rotation or translation of auditory space in neglect? A case study of chronic right-sided neglect. Neuropsychology 44:923–930CrossRefGoogle Scholar
  61. King JA, Burgess N, Hartley T, Vargha-Khadem F, O’Keefe J (2002) Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12:811–820Google Scholar
  62. Kosslyn SM (1987) Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev 94:148–175PubMedCrossRefGoogle Scholar
  63. Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787PubMedCrossRefGoogle Scholar
  64. Kwong KK, Belliveau JW, Chesler DA (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRefGoogle Scholar
  65. Lafon M, Vidal M, Berthoz A (2009) Selective influence of prior allocentric knowledge on the kinesthetic learning of a path. Exp Brain Res 194:541–552PubMedCrossRefGoogle Scholar
  66. Lambrey S, Amorim MA, Samson S, Noulhiane M, Hasboun D, Dupont S, Baulac M, Berthoz A (2008) Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 131:523–534PubMedCrossRefGoogle Scholar
  67. Landgraf S, Krebs MO, Olié JP, Committeri G, van der Meer E, Berthoz A, Amado I Real world referencing and schizophrenia: are we experiencing the same reality? Schizophr Bull (submitted)Google Scholar
  68. Maguire EA, Frackowiak RSJ, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110PubMedGoogle Scholar
  69. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998a) Knowing where and getting there: a human navigation network. Science 280:921–924PubMedCrossRefGoogle Scholar
  70. Maguire EA, Frith CD, Burgess N, Donnett JG, O’Keefe J (1998b) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76PubMedCrossRefGoogle Scholar
  71. McCloskey M (2001) Spatial representation in mind and brain. In: Rapp Brenda (ed) The handbook of cognitive neuropsychology: what deficits reveal about the human mind. Psychology Press, PhiladelphiaGoogle Scholar
  72. Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:1624–6209Google Scholar
  73. Medendorp WP, Goltz HC, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94:734–740PubMedCrossRefGoogle Scholar
  74. Medina J, Kannan V, Pawlak MA, Kleinman JT, Newhart M, Davis C, Heidler-Gary JE, Herskovits EH, Hillis AE (2009) Neural substrates of visuospatial processing in distinct reference frames: evidence from unilateral spatial neglect. J Cogn Neurosci 21:2073–2084PubMedCrossRefGoogle Scholar
  75. Mellet E, Briscogne S, Tzourio-Mazoyer N, Ghaem O, Petit L, Zago L, Etard O, Berthoz A, Mazoyer B, Denis M (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600PubMedCrossRefGoogle Scholar
  76. Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373PubMedCrossRefGoogle Scholar
  77. Merriam EP, Genovese CR, Colby CL (2007) Remapping in human visual cortex. J Neurophysiol 97:1738–1755PubMedCrossRefGoogle Scholar
  78. Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, OxfordGoogle Scholar
  79. Murphy JS, Wynne CE, O’Rourke EM, Commins S, Roche RA (2009) High-resolution ERP mapping of cortical activation related to implicit object-location memory. Biol Psychol 82:234–245Google Scholar
  80. Neggers SF, Van der Lubbe RH, Ramsey NF, Postma A (2006) Interactions between ego- and allocentric neuronal representations of space. Neuroimage 31:320–331PubMedCrossRefGoogle Scholar
  81. O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401:584–587PubMedCrossRefGoogle Scholar
  82. O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109PubMedCrossRefGoogle Scholar
  83. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, OxfordGoogle Scholar
  84. Olson CR (2003) Brain representation of object-centered space in monkeys and humans. Annu Rev Neurosci 26:331–354PubMedCrossRefGoogle Scholar
  85. Ono T, Tamura R, Nakamura K (1991) The hippocampus and space: are there “place neurons” in the monkey hippocampus? Hippocampus 1:253–257PubMedCrossRefGoogle Scholar
  86. Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47:1747–1756PubMedCrossRefGoogle Scholar
  87. Patchay S, Haggard P, Castiello U (2006) An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Exp Brain Res 2170:532–542CrossRefGoogle Scholar
  88. Pizzamiglio L, Committeri G, Galati G, Patria F (2000) Psychophysical properties of line bisection and body midline perception in unilateral neglect. Cortex 36:469–484PubMedCrossRefGoogle Scholar
  89. Richard C, Rousseaux M, Saj A, Honoré J (2004) Straight ahead in spatial neglect: evidence that space is shifted, not rotated. Neurology 63:2136–2138PubMedGoogle Scholar
  90. Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480PubMedCrossRefGoogle Scholar
  91. Rosenbaum RS, Ziegler M, Winocur G, Grady CL, Moscovitch M (2004) “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14:826–835PubMedCrossRefGoogle Scholar
  92. Saj A, Honoré J, Richard C, Coello Y, Bernati T, Rousseaux M (2006) Where is the “straight ahead” in spatial neglect? Neurology 67:1500–1503PubMedCrossRefGoogle Scholar
  93. Schmidt D, Krause BJ, Weiss PH, Fink GR, Shah NJ, Amorim MA, Müller HW, Berthoz A (2007) Visuospatial working memory and changes of the point of view in 3D space. Neuroimage 36:955–968PubMedCrossRefGoogle Scholar
  94. Sepe R, Trojano L, Committeri G, Grossi D, Romani GL, Galati G (2007) On the relationship between categorical/coordinate and egocentric/allocentric spatial representations. In: Grainger J, Alario F-X, Burle B, Janssen N (eds) Proceedings of the fifteenth meeting of the European society for cognitive psychology. ESCoP, Marseille, pp 101Google Scholar
  95. Sereno MI, Huang R-S (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9:1337–1343PubMedCrossRefGoogle Scholar
  96. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRefGoogle Scholar
  97. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354PubMedCrossRefGoogle Scholar
  98. Shildler P (1935) The image and appearance of the human body. Routledge, LondonGoogle Scholar
  99. Shirani P, Thorn J, Davis C, Heidler-Gary J, Newhart M, Gottesman RF, Hillis AE (2009) Severity of hypoperfusion in distinct brain regions predicts severity of hemispatial neglect in different reference frames. Stroke 40:3563–3566PubMedCrossRefGoogle Scholar
  100. Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13:488–495PubMedCrossRefGoogle Scholar
  101. Smania N, Aglioti S (1995) Sensory and spatial components of somaesthetic deficits following right brain damage. Neurology 45:1725–1730PubMedGoogle Scholar
  102. Sugiura M, Shah NJ, Zilles K, Fink GR (2005) Cortical representation of personally familiar objects and places: functional organization of the human posterior cingulate cortex. J Cogn Neurosci 17:183–198PubMedCrossRefGoogle Scholar
  103. Sulpizio V, Committeri G, Lambrey S, Zaoui M, Berthoz A, Galati G (2009) Human cortical regions encoding spatial locations in the environment across viewpoint changes. Society for Neuroscience Abstract 380.2/FF100. Chicago, October 17–21Google Scholar
  104. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337PubMedCrossRefGoogle Scholar
  105. Tabareau N, Bennequin D, Berthoz A, Slotine JJ, Girard B (2007) Geometry of the superior colliculus mapping and efficient oculomotor computation. Biol Cybern 97:279–292PubMedCrossRefGoogle Scholar
  106. Taube JS (1998) Head direction cells and the neuropsychological basis for a sense of direction. Prog Neurobiol 55:225–256PubMedCrossRefGoogle Scholar
  107. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208PubMedCrossRefGoogle Scholar
  108. Trullier O, Wiener SI, Berthoz A, Meyer JA (1997) Biologically based artificial navigation systems: review and prospects. Prog Neurobiol 51:483–544PubMedCrossRefGoogle Scholar
  109. Vallar G, Guariglia C, Nico D, Bisiach E (1995) Spatial hemineglect in back space. Brain 118:467–472PubMedCrossRefGoogle Scholar
  110. Vallar G, Guariglia C, Rusconi ML (1997) Modulation of the neglect syndrome by sensory stimulation. In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 555–578Google Scholar
  111. Vallar G, Lobel E, Galati G, Berthoz A, Pizzamiglio L, Le Bihan D (1999) A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res 124:281–286PubMedCrossRefGoogle Scholar
  112. Waller D, Hodgson E (2006) Transient and enduring spatial representations under disorientation and selfrotation. J Exp Psychol Learn Mem Cogn 32:867–882PubMedCrossRefGoogle Scholar
  113. Wang R, Spelke E (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376PubMedCrossRefGoogle Scholar
  114. Wolbers T, Büchel C (2005) Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J Neurosci 25:3333–3340PubMedCrossRefGoogle Scholar
  115. Wolbers T, Hegarty M, Buüchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223–1230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gaspare Galati
    • 1
    • 2
  • Gina Pelle
    • 3
    • 4
  • Alain Berthoz
    • 5
  • Giorgia Committeri
    • 3
    • 4
  1. 1.Department of PsychologySapienza UniversityRomeItaly
  2. 2.Laboratory of NeuropsychologyFoundation Santa LuciaRomeItaly
  3. 3.Department of Clinical Sciences and BioimagingUniversity G. d’AnnunzioChietiItaly
  4. 4.Institute for Advanced Biomedical TechnologiesFoundation University G. d’AnnunzioChietiItaly
  5. 5.Laboratoire de Physiologie de la Perception et de l’ActionCNRS, Collège de FranceParisFrance

Personalised recommendations