Experimental Brain Research

, Volume 201, Issue 1, pp 1–11 | Cite as

Neuroanatomical correlates of olfactory performance

  • Johannes Frasnelli
  • Johan N. Lundström
  • Julie A. Boyle
  • Jelena Djordjevic
  • Robert J. Zatorre
  • Marilyn Jones-Gotman
Research Article


We investigated associations between olfactory function and gray matter thickness in 46 healthy young subjects by means of an automated technique for measuring cortical thickness. We used an extended version of the Sniffin’ Sticks test to assess olfactory function, including odor threshold, concentration discrimination, quality discrimination, and odor identification. We observed a correlation between olfactory performance and cortical thickness of structures involved in earlier and later stages of chemosensory processing such as right medial orbitofrontal cortex, right insula, and adjacent cortex. Furthermore, we found significant bilateral correlations of olfactory performance with cortical thickness of areas around the central sulcus bilaterally, structures responsible for voluntary respiration and sniffing. In addition to expected general sex effects on cortical thickness, we observed areas, such as the entorhinal cortex, occipital cortex, intraparietal sulcus and insula (all in the right hemisphere), where the correlation between higher order olfactory functions and cortical thickness differed between women and men. These data demonstrate, for some neuroanatomical structures, a link between cortical thickness and olfactory function, in that thicker cortex is usually associated with better performance, but not always. This association between anatomy and olfactory performance suggests a possible biological explanation for the high degree of individual differences and sex effects observed in higher order olfactory tasks.


Smell Olfaction Cortical thickness Brain anatomy MRI 



We thank Alan Evans, Sylvain Milot, Claude Lepage, Nicolas Guizard, Samir Das, Ilana Leppert and the people from the McConnell Brain Imaging Centre of the Montreal Neurological Institute for the use of and the help with the CIVET data pipeline. We thank Marc Bouffard and Marc Schönwiesner for their suggestions at the data analysis. We thank Monica Hernandez, Giulia DeProphetis, and Aline Gauchat for behavioral testing. This study was supported by operating grant (MOP 57846) awarded to MJG by the Canadian Institutes of Health Research. JF is now supported by the Fondation de Ste.-Justine and the Fondation des Etoiles, JNL is now supported by the NIDCD (R03DC009869). RJZ is supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council.


  1. Ad-Dab’bagh Y, Singh V, Robbins S, Lerch J, Lyttelton O, Fombonne E, Evans AC (2005) Native-space cortical thickness measurement and the absence of correlation to cerebral volume. In: Zilles K (ed) 11th annual meeting of the organization for human brain mapping (OHBM), TorontoGoogle Scholar
  2. Ad-Dab’bagh Y, Einarson D, Lyttelton O, Muehlboeck J-S, Mok K, Ivanov O, Vincent RD, Lepage C, Lerch J, Fombonne E, Evans AC (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M (ed) 12th annual meeting of the organization for human brain mapping, Florence (Italy)Google Scholar
  3. Adler D, Gonzalez-Bermejo J, Duguet A, Demoule A, Le Pimpec-Barthes F, Hurbault A, Morelot-Panzini C, Similowski T (2009) Diaphragm pacing restores olfaction in tetraplegia. Eur Respir J 34(2):365–370CrossRefPubMedGoogle Scholar
  4. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821CrossRefPubMedGoogle Scholar
  5. Bengtsson S, Berglund H, Gulyas B, Cohen E, Savic I (2001) Brain activation during odor perception in males and females. Neuroreport 12:2027–2033CrossRefPubMedGoogle Scholar
  6. Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2008) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19(7):1583–1596CrossRefPubMedGoogle Scholar
  7. Boyle JA, Frasnelli J, Gerber J, Heinke M, Hummel T (2007) Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study. Neuroscience 149:223–231CrossRefPubMedGoogle Scholar
  8. Buschhuter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T (2008) Correlation between olfactory bulb volume and olfactory function. Neuroimage 42:498–502CrossRefPubMedGoogle Scholar
  9. Cain WS, Stevens JC, Nickou CM, Giles A, Johnston I, Garcia-Medina MR (1995) Life-span development of odor identification, learning, and olfactory sensitivity. Perception 24:1457–1472CrossRefPubMedGoogle Scholar
  10. Cao J (1999) The size of the connected components of excursion sets of χ 2 , t and F fields. Adv Appl Probab 31:579–595CrossRefGoogle Scholar
  11. Cerf-Ducastel B, Murphy C (2003) FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Res 986:39–53CrossRefPubMedGoogle Scholar
  12. Choi YY, Shamosh NA, Cho SH, De Young CG, Lee MJ, Lee JM, Kim SI, Cho ZH, Kim K, Gray JR, Lee KH (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28:10323–10329CrossRefPubMedGoogle Scholar
  13. Chung MK, Taylor J (2004) Diffusion smoothing on brain surface via finite element method. Proc IEEE Int Symp Biomed Imaging 1:432–435Google Scholar
  14. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D inter-subject registration of MR volumetric data in standardized Talairach Space. J Comput Assist Tomogr 18:192–205CrossRefPubMedGoogle Scholar
  15. Dade LA, Zatorre RJ, Jones-Gotman M (2002) Olfactory learning: convergent findings from lesion and brain imaging studies in humans. Brain 125:86–101CrossRefPubMedGoogle Scholar
  16. Djordjevic J, Zatorre RJ, Petrides M, Boyle JA, Jones-Gotman M (2005) Functional neuroimaging of odor imagery. Neuroimage 24:791–801CrossRefPubMedGoogle Scholar
  17. Doty RL, Shaman P, Dann M (1984) Development of the University of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol Behav 32:489–502CrossRefPubMedGoogle Scholar
  18. Doty RL, Applebaum SL, Zusho H, Settle RG (1985) A cross-cultural study on sex differences in odor identification ability. Neuropsychologia 23:667–672CrossRefPubMedGoogle Scholar
  19. Evans KC, Shea SA, Saykin AJ (1999) Functional MRI localisation of central nervous system regions associated with volitional inspiration in humans. J Physiol 520(Pt 2):383–392CrossRefPubMedGoogle Scholar
  20. Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:214–220CrossRefGoogle Scholar
  21. Garcia-Falgueras A, Junque C, Gimenez M, Caldu X, Segovia S, Guillamon A (2006) Sex differences in the human olfactory system. Brain Res 1116:103–111CrossRefPubMedGoogle Scholar
  22. Gottfried JA, Dolan RJ (2003) The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39:375–386CrossRefPubMedGoogle Scholar
  23. Gottfried JA, Zald DH (2005) On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res Rev 50:287–304PubMedGoogle Scholar
  24. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9:58–66Google Scholar
  25. Hillert L, Musabasic V, Berglund H, Ciumas C, Savic I (2007) Odor processing in multiple chemical sensitivity. Hum Brain Mapp 28:172–182CrossRefPubMedGoogle Scholar
  26. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) “Sniffin’ sticks”: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22:39–52CrossRefPubMedGoogle Scholar
  27. Hummel T, Damm M, Vent J, Schmidt M, Theissen P, Larsson M, Klussmann JP (2003) Depth of olfactory sulcus and olfactory function. Brain Res 975:85–89CrossRefPubMedGoogle Scholar
  28. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3, 000 subjects. Eur Arch Otorhinolaryngol 264:237–243CrossRefPubMedGoogle Scholar
  29. Hyde KL, Lerch JP, Zatorre RJ, Griffiths TD, Evans AC, Peretz I (2007) Cortical thickness in congenital amusia: when less is better than more. J Neurosci 27:13028–13032CrossRefPubMedGoogle Scholar
  30. Im K, Lee JM, Lee J, Shin YW, Kim IY, Kwon JS, Kim SI (2006) Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. Neuroimage 31:31–38CrossRefPubMedGoogle Scholar
  31. Jiang J, Zhu W, Shi F, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Thick visual cortex in the early blind. J Neurosci 29:2205–2211CrossRefPubMedGoogle Scholar
  32. Johnson BN, Mainland JD, Sobel N (2003) Rapid olfactory processing implicates subcortical control of an olfactomotor system. J Neurophysiol 90:1084–1094CrossRefPubMedGoogle Scholar
  33. Jones-Gotman M, Zatorre RJ (1988) Olfactory identification deficits in patients with focal cerebral excision. Neuropsychologia 26:387–400CrossRefPubMedGoogle Scholar
  34. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221CrossRefPubMedGoogle Scholar
  35. Koritnik B, Azam S, Andrew CM, Leigh PN, Williams SC (2008) Imaging the brain during sniffing: a pilot fMRI study. Pulm Pharmacol Ther 22(2):97–101CrossRefPubMedGoogle Scholar
  36. Larsson M (1997) Semantic factors in episodic recognition of common odors in early and late adulthood: a review. Chem Senses 22:623–633CrossRefPubMedGoogle Scholar
  37. Larsson M, Lovden M, Nilsson LG (2003) Sex differences in recollective experience for olfactory and verbal information. Acta Psychol 112:89–103CrossRefGoogle Scholar
  38. Laska M, Genzel D, Wieser A (2005) The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers. Chem Senses 30:171–175CrossRefPubMedGoogle Scholar
  39. Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173CrossRefPubMedGoogle Scholar
  40. Livermore A, Hummel T (2004) The influence of training on chemosensory event-related potentials and interactions between the olfactory and trigeminal systems. Chem Senses 29:41–51CrossRefPubMedGoogle Scholar
  41. Luders E, Narr KL, Thompson PM, Rex DE, Woods RP, Deluca H, Jancke L, Toga AW (2006) Gender effects on cortical thickness and the influence of scaling. Hum Brain Mapp 27:314–324CrossRefPubMedGoogle Scholar
  42. Lundstrom JN, Boyle JA, Jones-Gotman M (2008) Body position-dependent shift in odor percept present only for perithreshold odors. Chem Senses 33:23–33CrossRefPubMedGoogle Scholar
  43. MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356CrossRefPubMedGoogle Scholar
  44. Mainland J, Sobel N (2006) The sniff is part of the olfactory percept. Chem Senses 31:181–196CrossRefPubMedGoogle Scholar
  45. Mainland JD, Bremner EA, Young N, Johnson BN, Khan RM, Bensafi M, Sobel N (2002) Olfactory plasticity: one nostril knows what the other learns. Nature 419:802CrossRefPubMedGoogle Scholar
  46. Miyanari A, Kaneoke Y, Ihara A, Watanabe S, Osaki Y, Kubo T, Kato A, Yoshimine T, Sagara Y, Kakigi R (2006) Neuromagnetic changes of brain rhythm evoked by intravenous olfactory stimulation in humans. Brain Topogr 18:189–199CrossRefPubMedGoogle Scholar
  47. Miyanari A, Kaneoke Y, Noguchi Y, Honda M, Sadato N, Sagara Y, Kakigi R (2007) Human brain activation in response to olfactory stimulation by intravenous administration of odorants. Neurosci Lett 423:6–11CrossRefPubMedGoogle Scholar
  48. Moran DT, Jafek BW, Eller PM, Rowley JC (1992) Ultrastructural histopathology of human olfactory dysfunction. Microsc Res Tech 23:103–110CrossRefPubMedGoogle Scholar
  49. Narr KL, Woods RP, Thompson PM, Szeszko P, Robinson D, Dimtcheva T, Gurbani M, Toga AW, Bilder RM (2007) Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17:2163–2171CrossRefPubMedGoogle Scholar
  50. Pardini M, Huey ED, Cavanagh AL, Grafman J (2009) Olfactory function in corticobasal syndrome and frontotemporal dementia. Arch Neurol 66:92–96CrossRefPubMedGoogle Scholar
  51. Plailly J, Radnovich AJ, Sabri M, Royet JP, Kareken DA (2007) Involvement of the left anterior insula and frontopolar gyrus in odor discrimination. Hum Brain Mapp 28:363–372CrossRefPubMedGoogle Scholar
  52. Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006) Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116:436–439CrossRefPubMedGoogle Scholar
  53. Savic I, Gulyas B (2000) PET shows that odors are processed both ipsilaterally and contralaterally to the stimulated nostril. Neuroreport 11:2861–2866CrossRefPubMedGoogle Scholar
  54. Savic I, Gulyas B, Larsson M, Roland P (2000) Olfactory functions are mediated by parallel and hierarchical processing. Neuron 26:735–745CrossRefPubMedGoogle Scholar
  55. Savic I, Gulyas B, Berglund H (2002) Odorant differentiated pattern of cerebral activation: comparison of acetone and vanillin. Hum Brain Mapp 17:17–27CrossRefPubMedGoogle Scholar
  56. Simonyan K, Saad ZS, Loucks TM, Poletto CJ, Ludlow CL (2007) Functional neuroanatomy of human voluntary cough and sniff production. Neuroimage 37:401–409CrossRefPubMedGoogle Scholar
  57. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMedGoogle Scholar
  58. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286CrossRefPubMedGoogle Scholar
  59. Sobel N, Prabhakaran V, Zhao Z, Desmond JE, Glover GH, Sullivan EV, Gabrieli JD (2000) Time course of odorant-induced activation in the human primary olfactory cortex. J Neurophysiol 83:537–551PubMedGoogle Scholar
  60. Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, Xu D, Zhu H, Thompson PM, Toga AW (2007) Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex 17:1550–1560CrossRefPubMedGoogle Scholar
  61. Tohka J, Zijdenbos A, Evans A (2004) Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 23:84–97CrossRefPubMedGoogle Scholar
  62. Walhovd KB, Fjell AM, Dale AM, Fischl B, Quinn BT, Makris N, Salat D, Reinvang I (2006) Regional cortical thickness matters in recall after months more than minutes. Neuroimage 31:1343–1351CrossRefPubMedGoogle Scholar
  63. Wang J, Eslinger PJ, Smith MB, Yang QX (2005) Functional magnetic resonance imaging study of human olfaction and normal aging. J Gerontol A Biol Sci Med Sci 60:510–514PubMedGoogle Scholar
  64. Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40:655–664CrossRefPubMedGoogle Scholar
  65. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73CrossRefGoogle Scholar
  66. Zatorre RJ, Jones-Gotman M (2000) Functional imaging of the chemical senses. In: Toga AW, Mazziotta JC (eds) Brain mapping: the applications. Academic Press, San Diego, pp 403–424CrossRefGoogle Scholar
  67. Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E (1992) Functional localization and lateralization of human olfactory cortex. Nature 360:339–340CrossRefPubMedGoogle Scholar
  68. Zelano C, Bensafi M, Porter J, Mainland J, Johnson B, Bremner E, Telles C, Khan R, Sobel N (2005) Attentional modulation in human primary olfactory cortex. Nat Neurosci 8:114–120CrossRefPubMedGoogle Scholar
  69. Zijdenbos A, Forghani R, Evans AC (1998) Automatic quantification of ms lesions in 3D MRI brain data sets: validation of INSECT. In: Wells WM, Colchester V, Delp S (eds) Medical image computing and computer-assisted interventation (MICCAI98). Springer, Heidelberg, pp 439–448CrossRefGoogle Scholar
  70. Zijdenbos AP, Forghani R, AC E (2002) Automatic pipeline analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Johannes Frasnelli
    • 1
    • 2
    • 3
    • 7
  • Johan N. Lundström
    • 2
    • 5
    • 6
  • Julie A. Boyle
    • 2
    • 4
  • Jelena Djordjevic
    • 2
  • Robert J. Zatorre
    • 2
    • 4
  • Marilyn Jones-Gotman
    • 2
    • 4
  1. 1.Centre Hospitalier Universitaire Sainte-JustineUniversité de MontréalMontrealCanada
  2. 2.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.Centre de Recherche en Neuropsychologie et CognitionUniversité de MontréalMontrealCanada
  4. 4.Department of PsychologyMcGill UniversityMontrealCanada
  5. 5.Monell Chemical Senses CenterPhiladelphiaUSA
  6. 6.Department of PsychologyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Department de PsychologieUniversité de MontréalMontrealCanada

Personalised recommendations