Experimental Brain Research

, Volume 197, Issue 4, pp 403–408 | Cite as

Proprioceptive target matching asymmetries in left-handed individuals

  • Daniel J. Goble
  • Brittany C. Noble
  • Susan H. Brown
Research Note

Abstract

In right-handers, the ability to reproduce proprioceptive targets has been shown to be asymmetric, favoring the non-preferred left arm. The present study sought to determine whether a similar arm/hemisphere asymmetry exists for left-handers. Ten strong left-handed adults used the left or right arm to perform proprioceptive target matching tasks that varied in processing demands (i.e., need for memory, interhemispheric transfer) and target amplitude (20, 40°). Similar to right-handers, left-handed individuals had smaller total errors when matching with the non-preferred arm. This asymmetry was greatest in conditions with increased processing demands and larger amplitude targets. These results provide the first evidence to date of right arm/left hemisphere dominance for proprioceptive target matching in left-handers that is the “mirror image” of right-handers.

Keywords

Handedness Sensory feedback Proprioception Task complexity Kinesthesis Upper limb Laterality 

References

  1. Adamo DE, Martin BJ (2009) Position sense asymmetry. Exp Brain Res 192:87–95PubMedCrossRefGoogle Scholar
  2. Aimonetti JM, Morin D, Schmied A, Vedel JP, Pagni S. Somatosens Mot Res 16: 11-29Google Scholar
  3. Boulinguez P, Velay JL, Nougier V (2001) Manual asymmetries in reaching movement control. II: Study of left-handers. Cortex 37:123–138PubMedCrossRefGoogle Scholar
  4. Chase C, Seidler R (2008) Degree of handedness affects intermanual transfer of learning. Exp Brain Res 190:317–328PubMedCrossRefGoogle Scholar
  5. Coren S, Porac C (1977) Fifty centuries of right-handedness: the historical record. Science 198:631–632PubMedCrossRefGoogle Scholar
  6. Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci U S A 94:14015–14018PubMedCrossRefGoogle Scholar
  7. Elliott D, Roy E (1996) Manual asymmetries in motor performance. CRC Press, Boca Raton, pp 143–158Google Scholar
  8. Gandevia SC, Refshauge KM, Collins DF (2002) Proprioception: peripheral inputs and perceptual interactions. Adv Exp Med Biol 508:61–68PubMedGoogle Scholar
  9. Gilbert AN, Wysocki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608PubMedCrossRefGoogle Scholar
  10. Goble DJ, Brown SH (2007) Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp Brain Res 180:693–704PubMedCrossRefGoogle Scholar
  11. Goble DJ, Brown SH (2008a) Reply to Dr Derakhshan. J Neurophysiol 100:3459CrossRefGoogle Scholar
  12. Goble DJ, Brown SH (2008b) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610PubMedCrossRefGoogle Scholar
  13. Goble DJ, Brown SH (2008c) Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol 99(6):3063–3074PubMedCrossRefGoogle Scholar
  14. Goble DJ, Brown SH (2009) Dynamic proprioceptive target matching behavior in the upper limb: effects of speed, task difficulty and arm/hemisphere asymmetries. Behav Brain Res 200(1):7–14PubMedCrossRefGoogle Scholar
  15. Goble DJ, Lewis CA, Hurvitz EA, Brown SH (2005) Development of upper limb proprioceptive accuracy in children and adolescents. Hum Mov Sci 24:155–170PubMedCrossRefGoogle Scholar
  16. Goble DJ, Lewis CA, Brown SH (2006) Upper limb asymmetries in the utilization of proprioceptive feedback. Exp Brain Res 168:307–311PubMedCrossRefGoogle Scholar
  17. Goble DJ, Hurvitz EA, Brown SH (2009) Deficits in the ability to use proprioceptive feedback in children with hemiplegic cerebral palsy. Int J Rehabil Res (in press)Google Scholar
  18. Gonzalez CL, Ganel T, Goodale MA (2006) Hemispheric specialization for the visual control of action is independent of handedness. J Neurophysiol 95:3496–3501PubMedCrossRefGoogle Scholar
  19. Gonzalez CL, Whitwell RL, Morrissey B, Ganel T, Goodale MA (2007) Left-handedness does not extend to visually guided precision grasping. Exp Brain Res 182:275–279PubMedCrossRefGoogle Scholar
  20. Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214PubMedCrossRefGoogle Scholar
  21. Grunewald G, Grunewald-Zuberbier E, Gotzinger R, Mewald J, Schuhmacher H (1987) Hemispheric asymmetry of feedback-related potentials in a positioning task: comparison of right- and left-handed subjects. Biol Psychol 24:209–223PubMedCrossRefGoogle Scholar
  22. Haggard P, Newman C, Blundell J, Andrew H (2000) The perceived position of the hand in space. Percept Psychophys 62:363–377PubMedGoogle Scholar
  23. Henry FM (1974) Variable and constant performance errors within a group of individuals. J Mot Behav 6:149–154Google Scholar
  24. Imanaka K, Abernethy B (1992a) Cognitive strategies and short-term memory for movement distance and location. Q J Exp Psychol 45:669–700Google Scholar
  25. Imanaka K, Abernethy B (1992b) Interference between location and distance information in motor short-term memory: the respective roles of direct kinesthetic signals and abstract codes. J Mot Behav 24:274–280PubMedGoogle Scholar
  26. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617PubMedCrossRefGoogle Scholar
  27. Kurian G, Sharma NK, Santhakumari K (1989) Left-arm dominance in active positioning. Percept Mot Skills 68:1312–1314PubMedGoogle Scholar
  28. Leonard G, Milner B (1991a) Contribution of the right frontal lobe to the encoding and recall of kinesthetic distance information. Neuropsychologia 29:47–58PubMedCrossRefGoogle Scholar
  29. Leonard G, Milner B (1991b) Recall of the end-position of examiner-defined arm movements by patients with frontal- or temporal-lobe lesions. Neuropsychologia 29:629–640PubMedCrossRefGoogle Scholar
  30. Liepmann H (1920) Die linke hemisphare und das handeln. Munch Med Wochenschr 49:2322–2326Google Scholar
  31. Lutz K, Koeneke S, Wustenberg T, Jancke L (2005) Asymmetry of cortical activation during maximum and convenient tapping speed. Neurosci Lett 373:61–66PubMedCrossRefGoogle Scholar
  32. Marteniuk R (1973) Retention characteristics of motor short-term memory cues. J Mot Behav 5:249–259Google Scholar
  33. Marteniuk R, Shields K, Campbell S (1972) Amplitude, position, timing and velocity as cues in reproduction of movement. Percept Mot Skills 35:51–58PubMedGoogle Scholar
  34. Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, Zilles K, Ehrsson HH (2005) Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 93:1020–1034PubMedCrossRefGoogle Scholar
  35. Naito E, Nakashima T, Kito T, Aramaki Y, Okada T, Sadato N (2007) Human limb-specific and nonlimb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur J Neurosci 25(11):3476–3487 PubMedCrossRefGoogle Scholar
  36. Nishizawa S (1991) Different pattern of hemisphere specialization between identical kinesthetic spatial and weight discrimination tasks. Neuropsychologia 29:305–312PubMedCrossRefGoogle Scholar
  37. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  38. Perelle IB, Ehrman L (2005) On the other hand. Behav Genet 35:343–350PubMedCrossRefGoogle Scholar
  39. Roy EA, MacKenzie C (1978) Handedness effects in kinesthetic spatial location judgements. Cortex 14:250–258PubMedGoogle Scholar
  40. Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213PubMedCrossRefGoogle Scholar
  41. Schmidt SL, Oliveira RM, Krahe TE, Filgueiras CC (2000) The effects of hand preference and gender on finger tapping performance asymmetry by the use of an infrared light measurement device. Neuropsychologia 38:529–534PubMedCrossRefGoogle Scholar
  42. Schutz RW, Roy EA (1973) Absolute error: the devil in disguise. J Mot Behav 5:141–153Google Scholar
  43. Velay JL, Benoit-Dubrocard S (1999) Hemispheric asymmetry and interhemispheric transfer in reaching programming. Neuropsychologia 37:895–903PubMedCrossRefGoogle Scholar
  44. Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Daniel J. Goble
    • 1
    • 2
  • Brittany C. Noble
    • 1
  • Susan H. Brown
    • 1
  1. 1.School of KinesiologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of Biomedical KinesiologyKatholieke Universiteit LeuvenLeuven, HeverleeBelgium

Personalised recommendations