Experimental Brain Research

, Volume 196, Issue 4, pp 475–481 | Cite as

The intrinsic value of visual information affects saccade velocities

  • Minnan Xu-WilsonEmail author
  • David S. Zee
  • Reza Shadmehr
Research article


Let us assume that the purpose of any movement is to position our body in a more advantageous or rewarding state. For example, we might make a saccade to foveate an image because our brain assigns an intrinsic value to the information that it expects to acquire at the endpoint of that saccade. Different images might have different intrinsic values. Optimal control theory predicts that the intrinsic value that the brain assigns to targets of saccades should be reflected in the trajectory of the saccade. That is, in anticipation of foveating a highly valued image, our brain should produce a saccade with a higher velocity and shorter duration. Here, we considered four types of images: faces, objects, inverted faces, and meaningless visual noise. Indeed, we found that reflexive saccades that were made to a laser light in anticipation of viewing an image of a face had the highest velocities and shortest durations. The intrinsic value of visual information appears to have a small but significant influence on the motor commands that guide saccades.


Optimal control Motor control Computational neuroscience Eye movements Saccades Kinematics Image value 


  1. Bahill AT, Clark MR, Stark L (1975) The main sequence: a tool for studying human eye movements. Math Biosci 24(3/4):191–204Google Scholar
  2. Belova MA, Paton JJ, Salzman CD (2008) Moment-to-moment tracking of state value in the amygdala. J Neurosci 28:10023–10030PubMedCrossRefGoogle Scholar
  3. Bindemann M, Burton AM, Langton SR, Schweinberger SR, Doherty MJ (2007) The control of attention to faces. J Vis 7:15–18PubMedCrossRefGoogle Scholar
  4. Blatter K, Schultz W (2006) Rewarding properties of visual stimuli. Exp Brain Res 168:541–546PubMedCrossRefGoogle Scholar
  5. Bray S, O’Doherty J (2007) Neural coding of reward-prediction error signals during classical conditioning with attractive faces. J Neurophysiol 97:3036–3045PubMedCrossRefGoogle Scholar
  6. Bronstein AM, Kennard C (1987) Predictive eye saccades are different from visually triggered saccades. Vis Res 27:517–520PubMedCrossRefGoogle Scholar
  7. Cerf M, Harel J, Einhäuser W, Koch C (2008) Predicting human gaze using low-level saliency combined with face detection. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press, CambridgeGoogle Scholar
  8. Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R (2008) Adaptive control of saccades via internal feedback. J Neurosci 28:2804–2813PubMedCrossRefGoogle Scholar
  9. Collewijn H, Erkelens CJ, Steinman RM (1988) Binocular co-ordination of human horizontal saccadic eye movements. J Physiol 404:157–182PubMedGoogle Scholar
  10. Deaner RO, Khera AV, Platt ML (2005) Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Curr Biol 29:543–548CrossRefGoogle Scholar
  11. Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, Mayhew JEW, Overton PG, Redgrave P (2005) How visual stimuli activate dopaminergic neurons at short latency. Science 307:1476–1479PubMedCrossRefGoogle Scholar
  12. Ebisawa Y, Suzu K (1995) Focal attentional level while tracking a smoothly moving target influences saccadic dynamics. In: Proceedings of the 17th annual international conference of IEEE engineering medicine and biology society, vol 2, pp 1449–1450Google Scholar
  13. Edelman JA, Valenzuela N, Barton JJ (2006) Antisaccade velocity, but not latency, results from a lack of saccade visual guidance. Vis Res 46:1411–1421PubMedCrossRefGoogle Scholar
  14. Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10:382–390PubMedCrossRefGoogle Scholar
  15. Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P (2008) Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci 27:132–144PubMedCrossRefGoogle Scholar
  16. Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484PubMedCrossRefGoogle Scholar
  17. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784PubMedCrossRefGoogle Scholar
  18. Hayden BY, Parikh PC, Deaner RO, Platt ML (2007) Economic principles motivating social attention in humans. Proc Biol Sci 274:1751–1756PubMedCrossRefGoogle Scholar
  19. Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9:188–194PubMedCrossRefGoogle Scholar
  20. Hikosaka O (2007) Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci 1104:229–249PubMedCrossRefGoogle Scholar
  21. Hikosaka O, Nakamura K, Nakahara H (2006) Basal ganglia orient eyes to reward. J Neurophysiol 95:567–584PubMedCrossRefGoogle Scholar
  22. Johnston K, Everling S (2008) Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn 68:271–283PubMedCrossRefGoogle Scholar
  23. Kampe KKW, Frith CD, Dolan RJ, Frith U (2001) Psychology: reward value of attractiveness and gaze. Nature 413:589PubMedCrossRefGoogle Scholar
  24. Madelain L, Champrenaut L, Chauvin A (2007) Control of sensorimotor variability by consequences. J Neurophysiol 98:2255–2265PubMedCrossRefGoogle Scholar
  25. Maunsell JHR (2004) Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci 8:261–265CrossRefGoogle Scholar
  26. McCoy AN, Crowley JC, Haghighian G, Dean HL, Platt ML (2003) Saccade reward signals in posterior cingulate cortex. Neuron 40:1031–1040PubMedCrossRefGoogle Scholar
  27. Milstein DM, Dorris MC (2007) The influence of expected value on saccadic preparation. J Neurosci 27:4810–4818PubMedCrossRefGoogle Scholar
  28. Montagnini A, Chelazzi L (2005) The urgency to look: prompt saccades to the benefit of perception. Vis Res 45:3391–3401PubMedCrossRefGoogle Scholar
  29. Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl) 191:507–520CrossRefGoogle Scholar
  30. Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145PubMedGoogle Scholar
  31. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  32. Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381PubMedCrossRefGoogle Scholar
  33. Shepherd SV, Deaner RO, Platt ML (2006) Social status gates social attention in monkeys. Curr Biol 16:R119–R120PubMedCrossRefGoogle Scholar
  34. Snyder LH, Calton JL, Dickinson AR, Lawrence BM (2002) Eye–hand coordination: saccades are faster when accompanied by a coordinated arm movement. J Neurophysiol 87:2279–2286PubMedGoogle Scholar
  35. Straube A, Fuchs AF, Usher S, Robinson FR (1997) Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol 77:874–895PubMedGoogle Scholar
  36. Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp Brain Res 142:284–291PubMedCrossRefGoogle Scholar
  37. van Donkelaar P, Siu KC, Walterschied J (2004) Saccadic output is influenced by limb kinetics during eye–hand coordination. J Mot Behav 36:245–252PubMedCrossRefGoogle Scholar
  38. Watanabe K, Lauwereyns J, Hikosaka O (2003) Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. J Neurosci 23:10052–10057PubMedGoogle Scholar
  39. Yarbus AL (1961) Eye movements during the examination of complicated objects. Biofizika 6:52–56PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Minnan Xu-Wilson
    • 1
    Email author
  • David S. Zee
    • 2
  • Reza Shadmehr
    • 1
  1. 1.Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreUSA
  2. 2.Department of NeurologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations