Advertisement

Experimental Brain Research

, Volume 193, Issue 3, pp 409–419 | Cite as

The effect of sound intensity on the audiotactile crossmodal dynamic capture effect

  • Valeria OccelliEmail author
  • Charles Spence
  • Massimiliano Zampini
Research Article

Abstract

We investigated the effect of varying sound intensity on the audiotactile crossmodal dynamic capture effect. Participants had to discriminate the direction of a target stream (tactile, Experiment 1; auditory, Experiment 2) while trying to ignore the direction of a distractor stream presented in a different modality (auditory, Experiment 1; tactile, Experiment 2). The distractor streams could either be spatiotemporally congruent or incongruent with respect to the target stream. In half of the trials, the participants were presented with auditory stimuli at 75 dB(A) while in the other half of the trials they were presented with auditory stimuli at 82 dB(A). Participants’ performance on both tasks was significantly affected by the intensity of the sounds. Namely, the crossmodal capture of tactile motion by audition was stronger with the more intense (vs. less intense) auditory distractors (Experiment 1), whereas the capture effect exerted by the tactile distractors was stronger for less intense (than for more intense) auditory targets (Experiment 2). The crossmodal dynamic capture was larger in Experiment 1 than in Experiment 2, with a stronger congruency effect when the target streams were presented in the tactile (vs. auditory) modality. Two explanations are put forward to account for these results: an attentional biasing toward the more intense auditory stimuli, and a modulation induced by the relative perceptual weight of, respectively, the auditory and the tactile signals.

Keywords

Touch Audition Multisensory Sound intensity Crossmodal dynamic capture 

Notes

Acknowledgments

M.Z. was supported by a returning grant “Rientro dei cervelli” from the MURST (Italy).

References

  1. Alais D, Burr D (2004) No direction-specific bimodal facilitation for audiovisual motion detection. Brain Res Cogn Brain Res 19:185–194PubMedCrossRefGoogle Scholar
  2. Bartlett MS (1947) The use of transformation. Biometric Bull 3:39–52CrossRefGoogle Scholar
  3. Bensmaïa SJ, Killebrew JH, Craig JC (2006) Influence of visual motion on tactile motion perception. J Neurophysiol 96:1625–1637PubMedCrossRefGoogle Scholar
  4. Bertelson P, de Gelder B (2004) The psychology of multimodal perception. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 151–177Google Scholar
  5. Blackmer J, Haddad H (2005) The declaration of Helsinki: an update on paragraph 30. Can Med Assoc J 173:1052–1053CrossRefGoogle Scholar
  6. Bresciani JP, Ernst MO (2007) Signal reliability modulates auditory-tactile integration for event counting. NeuroReport 18:1157–1161PubMedCrossRefGoogle Scholar
  7. Caclin A, Soto-Faraco S, Kingstone A, Spence C (2002) Tactile ‘capture’ of audition. Percept Psychophys 64:616–630PubMedGoogle Scholar
  8. Craig JC (2006) Visual motion interferes with tactile motion perception. Perception 35:351–367PubMedCrossRefGoogle Scholar
  9. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169PubMedCrossRefGoogle Scholar
  10. Gardner EP, Sklar BF (1994) Discrimination of the direction of motion on the human hand: a psychophysical study of stimulation parameters. J Neurophysiol 71:2414–2429PubMedGoogle Scholar
  11. Gescheider G (1970) Some comparisons between touch and hearing. IEEE Trans Man Machine Syst 11:28–35CrossRefGoogle Scholar
  12. Getzmann S, Lewald J (2007) Localization of moving sound. Percept Psychophys 69:1022–1034PubMedGoogle Scholar
  13. Gillmeister H, Eimer M (2007) Tactile enhancement of auditory detection and perceived loudness. Brain Res 30:58–68CrossRefGoogle Scholar
  14. Griffiths TD, Bench CJ, Frackowiak RS (1994) Human cortical areas selectively activated by apparent sound movement. Curr Biol 4:892–895PubMedCrossRefGoogle Scholar
  15. Huddleston WE, Lewis JW, Phinney RE Jr, DeYoe EA (2008) Auditory and visual attention-based apparent motion share functional parallels. Percept Psychophys 70:1207–1216PubMedCrossRefGoogle Scholar
  16. Kirman JH (1974) Tactile apparent movement: the effects of number of stimulators. J Exp Psychol 103:1175–1180PubMedCrossRefGoogle Scholar
  17. Kolers PA (1972) Aspects of motion perception. Pergamon Press, OxfordGoogle Scholar
  18. Korte A (1915) Kinematoskopische Untersuchungen [Kinematoscopic investigations]. Zeitschrift für Psychologie 72:194–296Google Scholar
  19. Lakatos S, Shepard RN (1997) Constraints common to apparent motion in visual, tactile, and auditory space. J Exp Psychol Hum Percept Perform 23:1050–1060PubMedCrossRefGoogle Scholar
  20. Lindín M, Zurrón M, Díaz F (2005) Stimulus intensity effects on P300 amplitude across repetitions of a standard auditory oddball task. Biol Psychol 69:375–385PubMedCrossRefGoogle Scholar
  21. Lyons G, Sanabria D, Vatakis A, Spence C (2006) The modulation of crossmodal integration by unimodal perceptual grouping: a visuotactile apparent motion study. Exp Brain Res 174:510–516PubMedCrossRefGoogle Scholar
  22. Marks LE (1988) Magnitude estimation and sensory matching. Percept Psychophys 43:511–525PubMedGoogle Scholar
  23. Marks LE, Szczesiul R, Ohlott P (1986) On the cross-modal perception of intensity. J Exp Psychol Hum Percept Perform 12:517–534PubMedCrossRefGoogle Scholar
  24. Meyer GF, Wuerger SM (2001) Cross-modal integration of auditory and visual motion signals. NeuroReport 12:2557–2560PubMedCrossRefGoogle Scholar
  25. Occelli V, Spence C, Zampini M (submitted) Assessing the effect of sound complexity on the audiotactile crossmodal dynamic capture taskGoogle Scholar
  26. Olausson H, Norrsell U (1993) Observations on human tactile directional sensibility. J Physiol 464:545–559PubMedGoogle Scholar
  27. Ooshima S, Hashimoto Y, Ando H, Watanabe J, Kajimoto H (2008). Simultaneous presentation of tactile and auditory motion on the abdomen to realize the experience of “being cut by a sword”. In: Ferre M (ed) Eurohaptics 2008, LNCS, Springer-Verlag, Berlin, 5024, 681–686Google Scholar
  28. Oruc I, Sinnett S, Bischof W. F, Soto-Faraco S, Lock K, Kingstone A (2008) The effect of attention on the illusory capture of motion in bimodal stimuli. Brain Res (in press)Google Scholar
  29. Parise C, Spence C (2008) Synesthetic congruency modulates the temporal ventriloquism effect. Neurosci Lett 19:257–261CrossRefGoogle Scholar
  30. Ramachandran VS, Anstis SM (1986) The perception of apparent motion. Sci Am 254:102–109PubMedCrossRefGoogle Scholar
  31. Sanabria D, Soto-Faraco S, Spence C (2004) Exploring the role of visual perceptual grouping on the audiovisual integration of motion. NeuroReport 22:2745–2749Google Scholar
  32. Sanabria D, Soto-Faraco S, Spence C (2005) Spatiotemporal interactions between audition and touch depend on hand posture. Exp Brain Res 165:505–514PubMedCrossRefGoogle Scholar
  33. Sanabria D, Soto-Faraco S, Spence C (2007) Spatial attention and audiovisual interactions in apparent motion. J Exp Psychol Hum Percept Perform 33:927–937PubMedCrossRefGoogle Scholar
  34. Schürmann M, Caetano G, Jousmäki V, Hari R (2004) Hands help hearing: facilitatory audiotactile interaction at low sound-intensity levels. J Acoust Soc Am 115:830–832PubMedCrossRefGoogle Scholar
  35. Sekuler R, Watamaniuk SNJ, Blake R (2002). Visual motion perception. In: Pashler H (Series Ed.) and Yantis S (Vol. Ed.), Stevens’ handbook of experimental psychology, vol 1. Sensation and perception, 3rd edn. Wiley, New York, pp. 121–176Google Scholar
  36. Senkowski D, Saint-Amour D, Kelly SP, Foxe JJ (2007) Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study. Neuroimage 36:877–888PubMedCrossRefGoogle Scholar
  37. Sherrick CE (1976) The antagonisms of hearing and touch. In: Hirsh SK, Eldredge DH, Hirsh IJ, Silverman SR (eds) Hearing and Davis: essays honoring Hallowell Davis. Washington University Press, St. Louis, pp 149–158Google Scholar
  38. Soto-Faraco S, Kingstone A (2004) Multisensory integration of dynamic information. In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 49–68Google Scholar
  39. Soto-Faraco S, Lyons J, Gazzaniga M, Spence C, Kingstone A (2002) The ventriloquist in motion: illusory capture of dynamic information across sensory modalities. Cogn Brain Res 14:139–146CrossRefGoogle Scholar
  40. Soto-Faraco S, Kingstone A, Spence C (2003) Multisensory contributions to the perception of motion. Neuropsychologia 41:1847–1862PubMedCrossRefGoogle Scholar
  41. Soto-Faraco S, Spence C, Kingstone A (2004a) Congruency effects between auditory and tactile motion: extending the phenomenon of cross-modal dynamic capture. Cogn Affect Behav Neurosci 4:208–217PubMedCrossRefGoogle Scholar
  42. Soto-Faraco S, Spence C, Kingstone A (2004b) Cross-modal dynamic capture: congruency effect in the perception of motion across sensory modalities. J Exp Psychol Hum Percept Perform 30:330–345PubMedCrossRefGoogle Scholar
  43. Soto-Faraco S, Spence C, Kingstone A (2005) Assessing automaticity in the audiovisual integration of motion. Acta Psychol 118:71–92CrossRefGoogle Scholar
  44. Spence C, McGlone FP, Kettenmann B, Kobal G (2001) Attention to olfaction. A psychophysical investigation. Exp Brain Res 138:432–437Google Scholar
  45. Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, CambridgeGoogle Scholar
  46. Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–267PubMedCrossRefGoogle Scholar
  47. Strybel TZ, Vatakis A (2004) A comparison of auditory and visual apparent motion presented individually and with crossmodal moving distractors. Perception 33:1033–1048PubMedCrossRefGoogle Scholar
  48. Strybel TZ, Manligas CL, Perrott DR (1989) Auditory apparent motion under binaural and monaural listening conditions. Percept Psychophys 45:371–377PubMedGoogle Scholar
  49. Strybel TZ, Manligas CL, Chan O, Perrott DR (1990) A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities. Percept Psychophys 47:439–448PubMedGoogle Scholar
  50. Von Békésy G (1959) Similarities between hearing and skin sensations. Psychol Rev 66:1–22CrossRefGoogle Scholar
  51. Wertheimer M (1912) Experimentelle Studien über das Sehen von Bewegung [experimental studies on the visual perception of movement]. Zeitschrift für Psychologie 61:161–265Google Scholar
  52. Wozny DR, Beierholm UR, Shams L (2008) Human trimodal perception follows optimal statistical inference. J Vis 8(3):1–11PubMedCrossRefGoogle Scholar
  53. Yantis S, Nakama T (1998) Visual interactions in the path of apparent motion. Nat Neurosci 1:508–512PubMedCrossRefGoogle Scholar
  54. Zihl J, von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–340PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Valeria Occelli
    • 1
    • 2
    Email author
  • Charles Spence
    • 2
  • Massimiliano Zampini
    • 1
    • 3
  1. 1.Department of Cognitive Sciences and EducationUniversity of TrentoRovereto (TN)Italy
  2. 2.Department of Experimental Psychology, Crossmodal Research LaboratoryOxford UniversityOxfordUK
  3. 3.Center for Mind/Brain SciencesUniversity of TrentoRovereto (TN)Italy

Personalised recommendations