Advertisement

Experimental Brain Research

, 191:383 | Cite as

Mapping causal interregional influences with concurrent TMS–fMRI

  • Sven BestmannEmail author
  • Christian C. Ruff
  • Felix Blankenburg
  • Nikolaus Weiskopf
  • Jon Driver
  • John C. Rothwell
Review

Abstract

Transcranial magnetic stimulation (TMS) produces a direct causal effect on brain activity that can now be studied by new approaches that simultaneously combine TMS with neuroimaging methods, such as functional magnetic resonance imaging (fMRI). In this review we highlight recent concurrent TMS–fMRI studies that illustrate how this novel combined technique may provide unique insights into causal interactions among brain regions in humans. We show how fMRI can detect the spatial topography of local and remote TMS effects and how these may vary with psychological factors such as task-state. Concurrent TMS–fMRI may furthermore reveal how the brain adapts to so-called virtual lesions induced by TMS, and the distributed activity changes that may underlie the behavioural consequences often observed during cortical stimulation with TMS. We argue that combining TMS with neuroimaging techniques allows a further step in understanding the physiological underpinnings of TMS, as well as the neural correlated of TMS-evoked consequences on perception and behaviour. This can provide powerful new insights about causal interactions among brain regions in both health and disease that may ultimately lead to developing more efficient protocols for basic research and therapeutic TMS applications.

Keywords

Effective connectivity Dorsal premotor cortex Top-down control Virtual lesion State-dependence Neuroimaging 

Abbreviations

BOLD

Blood-oxygenation-level-dependent

DCM

Dynamic causal modelling

EEG

Electroencephalography

EPI

Echo-planar imaging

FEF

Frontal eye fields

fMRI

Functional magnetic resonance imaging

M1

Primary motor cortex

NIRS

Near-infrared spectroscopy

PET

Positron emission tomography

PMd

Dorsal premotor cortex

IPS

Intraparietal sulcus

TES

Transcranial electrical stimulation

tDCS

Transcranial direct current stimulation

TMS

Transcranial magnetic stimulation

SoM

Sense of movement

Notes

Acknowledgments

The support of the Wellcome Trust and Medical Research Council (MRC) is acknowledged. JD holds a Royal Society Leverhulme Senior Research Fellowship.

Supplementary material

References

  1. Allen EA, Pasley BN, Duong T, Freeman RD (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317:1918–1921PubMedCrossRefGoogle Scholar
  2. Armstrong KM, Fitzgerald JK, Moore T (2006) Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50:791–798PubMedCrossRefGoogle Scholar
  3. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699PubMedGoogle Scholar
  4. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRefGoogle Scholar
  5. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRefGoogle Scholar
  6. Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114PubMedGoogle Scholar
  7. Aydin-Abidin S, Moliadze V, Eysel UT, Funke K (2006) Effects of repetitive TMS on visually evoked potentials and EEG in the anaesthetized cat: dependence on stimulus frequency and train duration. J Physiol 574:443–455PubMedCrossRefGoogle Scholar
  8. Balslev D, Nielsen FA, Lund TE, Law I, Paulson OB (2006) Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony. Neuroimage 31:308–312PubMedCrossRefGoogle Scholar
  9. Baudewig J, Nitsche MA, Paulus W, Frahm J (2001a) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med 45:196–201PubMedCrossRefGoogle Scholar
  10. Baudewig J, Siebner HR, Bestmann S, Tergau F, Tings T, Paulus W, Frahm J (2001b) Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport 12:3543–3548PubMedCrossRefGoogle Scholar
  11. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20:1685–1696PubMedCrossRefGoogle Scholar
  12. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962PubMedCrossRefGoogle Scholar
  13. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29PubMedCrossRefGoogle Scholar
  14. Bestmann S, Oliviero A, Voss M, Dechent P, Lopez-Dolado E, Driver J, Baudewig J (2006) Cortical correlates of TMS-induced phantom hand movements revealed with concurrent TMS–fMRI. Neuropsychologia 44:2959–2971PubMedCrossRefGoogle Scholar
  15. Bestmann S, Ruff CC, Blakemore C, Driver J, Thilo KV (2007) Spatial attention changes excitability of human visual cortex to direct stimulation. Curr Biol 17:134–139PubMedCrossRefGoogle Scholar
  16. Bestmann S, Ruff CC, Driver J, Blankenburg F (2008a) Concurrent TMS and functional magnetic resonance imaging: methods and current advances. In: Wasserman EA, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, OxfordGoogle Scholar
  17. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008b) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291PubMedCrossRefGoogle Scholar
  18. Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Eshel N, Josephs O, Weiskopf N, Driver J (2008) Interhemispheric effect of parietal tms on somatosensory response confirmed directly with concurrent TMS–fMRI. J Neurosci (in press)Google Scholar
  19. Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, Dannels WR, Haxthausen EU, Vincent DJ, George MS (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33:336–340PubMedCrossRefGoogle Scholar
  20. Bohning DE, Shastri A, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, Teneback C, Vincent DJ, George MS (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394PubMedCrossRefGoogle Scholar
  21. Bohning DE, Shastri A, McGavin L, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, George MS (2000a) Motor cortex brain activity induced by 1-Hz transcranial magnetic stimulation is similar in location and level to that for volitional movement. Invest Radiol 35:676–683PubMedCrossRefGoogle Scholar
  22. Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, Nahas Z, Lomarev MP, George MS (2000b) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574PubMedCrossRefGoogle Scholar
  23. Bohning DE, Shastri A, Lomarev MP, Lorberbaum JP, Nahas Z, George MS (2003) BOLD-fMRI response vs. transcranial magnetic stimulation (TMS) pulse-train length: testing for linearity. J Magn Reson Imaging 17:279–290PubMedCrossRefGoogle Scholar
  24. Brandt SA, Brocke J, Roricht S, Ploner CJ, Villringer A, Meyer BU (2001) In vivo assessment of human visual system connectivity with transcranial electrical stimulation during functional magnetic resonance imaging. Neuroimage 14:366–375PubMedCrossRefGoogle Scholar
  25. Brocke J, Schmidt S, Irlbacher K, Cichy RM, Brandt SA (2007) Transcranial cortex stimulation and fMRI: Electrophysiological correlates of dual-pulse BOLD signal modulation. Neuroimage 40:631–643PubMedCrossRefGoogle Scholar
  26. Chambers CD, Mattingley JB (2005) Neurodisruption of selective attention: insights and implications. Trends Cogn Sci 9:542–550PubMedCrossRefGoogle Scholar
  27. Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10PubMedCrossRefGoogle Scholar
  28. Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRefGoogle Scholar
  29. Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453PubMedCrossRefGoogle Scholar
  30. Classen J, Stefan K (2008) Changes in TMS measures induced by repetitive TMS. The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 185-200Google Scholar
  31. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRefGoogle Scholar
  32. Curra A, Modugno N, Inghilleri M, Manfredi M, Hallett M, Berardelli A (2002) Transcranial magnetic stimulation techniques in clinical investigation. Neurology 59:1851–1859PubMedGoogle Scholar
  33. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R (2008) Dysfunctional neural plasticity in patients with schizophrenia. Arch Gen Psychiatry 65:378–385PubMedCrossRefGoogle Scholar
  34. Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268PubMedCrossRefGoogle Scholar
  35. de Labra C, Rivadulla C, Grieve K, Marino J, Espinosa N, Cudeiro J (2007) Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cereb Cortex 17:1376–1385PubMedCrossRefGoogle Scholar
  36. Denslow S, Lomarev M, George MS, Bohning DE (2005) Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 57:752–760PubMedCrossRefGoogle Scholar
  37. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222PubMedCrossRefGoogle Scholar
  38. Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268PubMedCrossRefGoogle Scholar
  39. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266PubMedCrossRefGoogle Scholar
  40. Driver J (2001) A selective review of selective attention research from the past century. Br J Psychol 92:53–78CrossRefGoogle Scholar
  41. Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom–up dependent gating of frontal signals in early visual cortex. Science 321:414–417PubMedCrossRefGoogle Scholar
  42. Epstein CM (2008) TMS stimulation coils. In: Wasserman EA, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, OxfordGoogle Scholar
  43. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMedGoogle Scholar
  44. Formisano E, Goebel R (2003) Tracking cognitive processes with functional MRI mental chronometry. Curr Opin Neurobiol 13:174–181PubMedCrossRefGoogle Scholar
  45. Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P (1997) Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 8:2787–2791PubMedCrossRefGoogle Scholar
  46. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302PubMedCrossRefGoogle Scholar
  47. Friston KJ, Price CJ (2003) Degeneracy and redundancy in cognitive anatomy. Trends Cogn Sci 7:151–152PubMedCrossRefGoogle Scholar
  48. Fujiwara T, Rothwell JC (2004) The after effects of motor cortex rTMS depend on the state of contraction when rTMS is applied. Clin Neurophysiol 115:1514–1518PubMedCrossRefGoogle Scholar
  49. George MS, Nahas Z, Kozol FA, Li X, Yamanaka K, Mishory A, Bohning DE (2003) Mechanisms and the current state of transcranial magnetic stimulation. CNS Spectr 8:496–514PubMedGoogle Scholar
  50. Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55:187–199PubMedCrossRefGoogle Scholar
  51. Hanaoka N, Aoyama Y, Kameyama M, Fukuda M, Mikuni M (2007) Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study. Neurosci Lett 414:99–104PubMedCrossRefGoogle Scholar
  52. Huang YZ, Rothwell JC, Edwards MJ, Chen RS (2008) Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 18:563–570PubMedCrossRefGoogle Scholar
  53. Hubl D, Nyffeler T, Wurtz P, Chaves S, Pflugshaupt T, Luthi M, von Wartburg R, Wiest R, Dierks T, Strik WK, Hess CW, Muri RM (2008) Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field. Neuroscience 151:921–928PubMedCrossRefGoogle Scholar
  54. Ilmoniemi R, Karhu J (2008) TMS and electroencephalography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 593–608Google Scholar
  55. Ilmoniemi RJ, Ruohonen J, Virtanen J, Aronen HJ, Karhu J (1999) EEG responses evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:22–29PubMedGoogle Scholar
  56. Josephs O, Henson RN (1999) Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philos Trans R Soc Lond B Biol Sci 354:1215–1228PubMedCrossRefGoogle Scholar
  57. Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 24:955–960PubMedCrossRefGoogle Scholar
  58. Kemna LJ, Gembris D (2003) Repetitive transcranial magnetic stimulation induces different responses in different cortical areas: a functional magnetic resonance study in humans. Neurosci Lett 336:85–88PubMedCrossRefGoogle Scholar
  59. Kimbrell TA, Dunn RT, George MS, Danielson AL, Willis MW, Repella JD, Benson BE, Herscovitch P, Post RM, Wassermann EM (2002) Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 115:101–113PubMedCrossRefGoogle Scholar
  60. Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez SM, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459PubMedCrossRefGoogle Scholar
  61. Koch G, Franca M, Mochizuki H, Marconi B, Caltagirone C, Rothwell JC (2007) Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol 578:551–562PubMedCrossRefGoogle Scholar
  62. Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184PubMedCrossRefGoogle Scholar
  63. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519PubMedGoogle Scholar
  64. Lee L, Siebner H, Bestmann S (2006) Rapid modulation of distributed brain activity by transcranial magnetic stimulation of human motor cortex. Behav Neurol 17:135–148PubMedGoogle Scholar
  65. Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318PubMedGoogle Scholar
  66. Li X, Nahas Z, Kozel FA, Anderson B, Bohning DE, George MS (2004a) Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biol Psychiatry 55:882–890PubMedCrossRefGoogle Scholar
  67. Li X, Teneback CC, Nahas Z, Kozel FA, Large C, Cohn J, Bohning DE, George MS (2004b) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407PubMedCrossRefGoogle Scholar
  68. Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531PubMedCrossRefGoogle Scholar
  69. Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769PubMedCrossRefGoogle Scholar
  70. Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501PubMedCrossRefGoogle Scholar
  71. Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369PubMedCrossRefGoogle Scholar
  72. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232PubMedCrossRefGoogle Scholar
  73. Matthews PM, Jezzard P (2004) Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 75:6–12PubMedGoogle Scholar
  74. Mazzocchio R, Rothwell JC, Day BL, Thompson PD (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol 474:261–267PubMedGoogle Scholar
  75. Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A (2006) Mapping phantom movement representations in the motor cortex of amputees. Brain 129:2202–2210PubMedCrossRefGoogle Scholar
  76. Mochizuki H, Ugawa Y, Terao Y, Sakai KL (2006) Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy. Exp Brain Res 169:302–310PubMedCrossRefGoogle Scholar
  77. Mochizuki H, Furubayashi T, Hanajima R, Terao Y, Mizuno Y, Okabe S, Ugawa Y (2007) Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices. Exp Brain Res 180:667–675PubMedCrossRefGoogle Scholar
  78. Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359PubMedCrossRefGoogle Scholar
  79. Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553:665–679PubMedCrossRefGoogle Scholar
  80. Moliadze V, Giannikopoulos D, Eysel UT, Funke K (2005) Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity. J Physiol 566:955–965PubMedCrossRefGoogle Scholar
  81. Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373PubMedCrossRefGoogle Scholar
  82. Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561PubMedGoogle Scholar
  83. Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C, McConnell K, Vincent DJ, Li X, George MS, Bohning DE (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50:712–720PubMedCrossRefGoogle Scholar
  84. Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci 19:6134–6144PubMedGoogle Scholar
  85. Naito E, Roland PE, Ehrsson HH (2002) I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36:979–988PubMedCrossRefGoogle Scholar
  86. Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 110:1325–1328PubMedCrossRefGoogle Scholar
  87. Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18:1206–1212PubMedCrossRefGoogle Scholar
  88. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedCrossRefGoogle Scholar
  89. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276PubMedGoogle Scholar
  90. O’Shea J, Johansen-Berg H, Trief D, Gobel S, Rushworth MF (2007a) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490PubMedCrossRefGoogle Scholar
  91. O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MF (2007b) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095PubMedCrossRefGoogle Scholar
  92. Oliviero A, Di Lazzaro V, Piazza O, Profice P, Pennisi MA, Della CF, Tonali P (1999) Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol 246:1164–1168PubMedCrossRefGoogle Scholar
  93. Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol (in press). doi: 10.1113/jphysiol.2008.158956
  94. Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354:1229–1238PubMedCrossRefGoogle Scholar
  95. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRefGoogle Scholar
  96. Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRefGoogle Scholar
  97. Patel RS, Bowman FD, Rilling JK (2006) A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp 27:267–276PubMedCrossRefGoogle Scholar
  98. Paus T (1999) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224PubMedCrossRefGoogle Scholar
  99. Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360:1109–1114PubMedCrossRefGoogle Scholar
  100. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMedGoogle Scholar
  101. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1998) Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 79:1102–1107PubMedGoogle Scholar
  102. Paus T, Castro-Alamancos MA, Petrides M (2001a) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14:1405–1411PubMedCrossRefGoogle Scholar
  103. Paus T, Sipila PK, Strafella AP (2001b) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990PubMedGoogle Scholar
  104. Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23(suppl 1):S264–S274Google Scholar
  105. Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Comparing dynamic causal models. Neuroimage 22:1157–1172PubMedCrossRefGoogle Scholar
  106. Pleger B, Blankenburg F, Bestmann S, Ruff CC, Wiech K, Stephan KE, Friston KJ, Dolan RJ (2006a) Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. J Neurosci 26:1945–1952PubMedCrossRefGoogle Scholar
  107. Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ (2006b) Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26:12596–12601PubMedCrossRefGoogle Scholar
  108. Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S, Johansson H (2002) Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res 143:276–285PubMedCrossRefGoogle Scholar
  109. Reddy H, Floyer A, Donaghy M, Matthews PM (2001) Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res 138:484–491PubMedCrossRefGoogle Scholar
  110. Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351PubMedCrossRefGoogle Scholar
  111. Ridding MC, Rothwell JC (2007) Therapeutic use of rTMS. Nat Rev Neurosci 8:559–567PubMedCrossRefGoogle Scholar
  112. Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548PubMedGoogle Scholar
  113. Roberts DR, Vincent DJ, Speer AM, Bohning DE, Cure J, Young J, George MS (1997) Multi-modality mapping of motor cortex: comparing echoplanar BOLD fMRI and transcranial magnetic stimulation. Short communication. J Neural Transm 104:833–843PubMedCrossRefGoogle Scholar
  114. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242PubMedCrossRefGoogle Scholar
  115. Romaiguere P, Anton JL, Roth M, Casini L, Roll JP (2003) Motor and parietal cortical areas both underlie kinaesthesia. Brain Res Cogn Brain Res 16:74–82PubMedCrossRefGoogle Scholar
  116. Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27:11465–11472PubMedCrossRefGoogle Scholar
  117. Romei V, Rihs T, Brodbeck V, Thut G (2008) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport 19:203–208PubMedCrossRefGoogle Scholar
  118. Rosen G, Hugdahl K, Ersland L, Lundervold A, Smievoll AI, Barndon R, Sundberg H, Thomsen T, Roscher BE, Tjolsen A, Engelsen B (2001) Different brain areas activated during imagery of painful and non-painful ‘finger movements’ in a subject with an amputated arm. Neurocase 7:255–260PubMedCrossRefGoogle Scholar
  119. Roth BJ, Cohen LG, Hallett M (1991a) The electric field induced during magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 43:268–278PubMedGoogle Scholar
  120. Roth BJ, Saypol JM, Hallett M, Cohen LG (1991b) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:47–56PubMedCrossRefGoogle Scholar
  121. Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122PubMedCrossRefGoogle Scholar
  122. Rothwell JC (1999) Paired-pulse investigations of short-latency intracortical facilitation using TMS in humans. Electroencephalogr Clin Neurophysiol Suppl 51:113–119PubMedGoogle Scholar
  123. Rounis E, Stephan KE, Lee L, Siebner HR, Pesenti A, Friston KJ, Rothwell JC, Frackowiak RS (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26:9629–9638PubMedCrossRefGoogle Scholar
  124. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS–fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488PubMedCrossRefGoogle Scholar
  125. Ruff CC, Bestmann S, Blankenburg F, Bjoertomt O, Josephs O, Weiskopf N, Deichmann R, Driver J (2008a) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex 18:817–827PubMedCrossRefGoogle Scholar
  126. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Weiskopf N, Driver J (2008b) Hemispheric Differences in Frontal and Parietal Influences on the Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI. J Cogn Neurosci (in press)Google Scholar
  127. Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(suppl 1):S89–S100Google Scholar
  128. Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308:702–704PubMedCrossRefGoogle Scholar
  129. Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599PubMedCrossRefGoogle Scholar
  130. Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, Baudewig J (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17:2841–2852PubMedCrossRefGoogle Scholar
  131. Sack AT, Sperling JM, Prvulovic D, Formisano E, Goebel R, Di Salle F, Dierks T, Linden DE (2002) Tracking the mind’s image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35:195–204PubMedCrossRefGoogle Scholar
  132. Schafer RJ, Moore T (2007) Attention governs action in the primate frontal eye field. Neuron 56:541–551PubMedCrossRefGoogle Scholar
  133. Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26:5098–5108PubMedCrossRefGoogle Scholar
  134. Schluter ND, Krams M, Rushworth MF, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39:105–113PubMedCrossRefGoogle Scholar
  135. Seyal M, Ro T, Rafal R (1995) Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe. Ann Neurol 38:264–267PubMedCrossRefGoogle Scholar
  136. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577PubMedCrossRefGoogle Scholar
  137. Siebner HR, Peller M, Willoch F, Auer C, Bartenstein P, Drzezga A, Schwaiger M, Conrad B (1999) Imaging functional activation of the auditory cortex during focal repetitive transcranial magnetic stimulation of the primary motor cortex in normal subjects. Neurosci Lett 270:37–40PubMedCrossRefGoogle Scholar
  138. Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B, Bartenstein P (2000) Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 54:956–963PubMedGoogle Scholar
  139. Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRefGoogle Scholar
  140. Siebner HR, Filipovic SR, Rowe JB, Cordivari C, Gerschlager W, Rothwell JC, Frackowiak RS, Bhatia KP (2003a) Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain 126:2710–2725PubMedCrossRefGoogle Scholar
  141. Siebner HR, Peller M, Lee L (2003b) Applications of combined TMS-PET studies in clinical and basic research. Suppl Clin Neurophysiol 56:63–72PubMedGoogle Scholar
  142. Siebner HR, Peller M, Lee L (2008) TMS and positron emission tomography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 549–567Google Scholar
  143. Siebner HR, Takano B, Peinemann A, Schwaiger M, Conrad B, Drzezga A (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14:883–890PubMedCrossRefGoogle Scholar
  144. Siebner HR, Willoch F, Peller M, Auer C, Boecker H, Conrad B, Bartenstein P (1998) Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9:943–948PubMedCrossRefGoogle Scholar
  145. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. Eur J Neurosci 26:523–528PubMedCrossRefGoogle Scholar
  146. Speer AM, Willis MW, Herscovitch P, Daube-Witherspoon M, Shelton JR, Benson BE, Post RM, Wassermann EM (2003) Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: II. Effects of prefrontal cortex rTMS. Biol Psychiatry 54:826–832PubMedCrossRefGoogle Scholar
  147. Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778PubMedCrossRefGoogle Scholar
  148. Stephan KE, Penny WD, Marshall JC, Fink GR, Friston KJ (2005) Investigating the functional role of callosal connections with dynamic causal models. Ann NY Acad Sci 1064:16–36PubMedCrossRefGoogle Scholar
  149. Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. Neuroimage 42:649–662PubMedCrossRefGoogle Scholar
  150. Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157Google Scholar
  151. Strafella AP, Paus T, Fraraccio M, Dagher A (2003) Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126:2609–2615PubMedCrossRefGoogle Scholar
  152. Strens LH, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P (2002) The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol 113:1279–1285PubMedCrossRefGoogle Scholar
  153. Swayne O, Bestmann S, Blankenburg F, Ruff CC, Teo JT, Weiskopf N, Driver J, Frackowiak R, Rothwell JC, Ward NS. (2006) The role of contralesional premotor cortex after stroke. 559.8. 2006. Society for NeuroscienceGoogle Scholar
  154. Taylor PC, Nobre AC, Rushworth MF (2007a) FEF TMS affects visual cortical activity. Cereb Cortex 17:391–399PubMedCrossRefGoogle Scholar
  155. Taylor PC, Nobre AC, Rushworth MF (2007b) Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J Neurosci 27:11343–11353PubMedCrossRefGoogle Scholar
  156. Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Forster AF, Nicolas V, Dinse HR (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362PubMedCrossRefGoogle Scholar
  157. Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521PubMedCrossRefGoogle Scholar
  158. Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48:901–911PubMedCrossRefGoogle Scholar
  159. Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817PubMedCrossRefGoogle Scholar
  160. Touge T, Gerschlager W, Brown P, Rothwell JC (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112:2138–2145PubMedCrossRefGoogle Scholar
  161. Valero-Cabre A, Payne BR, Rushmore J, Lomber SG, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C–2DG tracing study in the cat. Exp Brain Res 163:1–12PubMedCrossRefGoogle Scholar
  162. Virtanen J, Ruohonen J, Naatanen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37:322–326PubMedCrossRefGoogle Scholar
  163. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565PubMedCrossRefGoogle Scholar
  164. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79PubMedCrossRefGoogle Scholar
  165. Worsley KJ, Cao J, Paus T, Petrides M, Evans AC (1998) Applications of random field theory to functional connectivity. Hum Brain Mapp 6:364–367PubMedCrossRefGoogle Scholar
  166. Ziemann U, Rothwell JC (2000) I-waves in motor cortex. J Clin Neurophysiol 17:397–405PubMedCrossRefGoogle Scholar
  167. Ziemann U (2004a) TMS and drugs. Clin Neurophysiol 115:1717–1729PubMedCrossRefGoogle Scholar
  168. Ziemann U (2004b) TMS induced plasticity in human cortex. Rev Neurosci 15:253–266PubMedGoogle Scholar
  169. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378PubMedCrossRefGoogle Scholar
  170. Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330PubMedCrossRefGoogle Scholar
  171. Ziemann U, Meintzschel F, Korchounov A, Ilic TV (2006) Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair 20:243–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sven Bestmann
    • 1
    • 2
    • 3
    Email author
  • Christian C. Ruff
    • 2
    • 3
  • Felix Blankenburg
    • 2
    • 4
  • Nikolaus Weiskopf
    • 2
  • Jon Driver
    • 2
    • 3
  • John C. Rothwell
    • 1
  1. 1.Sobell Department of Motor Neuroscience and Movement Disorders, Institute of NeurologyUniversity College LondonLondonUK
  2. 2.Wellcome Trust Centre for Neuroimaging at UCLUniversity College LondonLondonUK
  3. 3.UCL Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
  4. 4.Bernstein Center for Computational Neuroscience, CharitéBerlinGermany

Personalised recommendations