Experimental Brain Research

, 192:343 | Cite as

Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects

  • Olivier Collignon
  • Patrice Voss
  • Maryse Lassonde
  • Franco Lepore


Until only a few decades ago, researchers still considered sensory cortices to be fixed or “hardwired,” with specific cortical regions solely dedicated to the processing of selective sensory inputs. But recent evidences have shown that the brain can rewire itself, showing an impressive range of cross-modal plasticity. Visual deprivation is one of the rare human models that allow us to explore the role of experience-dependent plasticity of a sensory cortex deprived of its natural inputs. The objective of this paper is to describe recent results regarding the spatial processing of sounds in blind subjects. These studies suggest that blind individuals may demonstrate exceptional abilities in auditory spatial processing and that such enhanced performances may be intrinsically linked to the recruitment of occipital areas deprived of their normal visual inputs. Such results highlight the brain’s remarkable ability to rewire its components to compensate for the challenging neurological condition that is visual deprivation. Moreover, we shall discuss that such cross-modal recruitment may, to some extent, follow organizational principles similar to the functional topography of the region observed in the sighted. Even if such recruitment is especially present in individuals having lost their sight in early infancy, occipital regions also show impressive plastic properties when vision is lost at a later age. This observation will be related to recent results demonstrating that occipital regions play a more important role than previously expected in the spatial processing of sounds, even in sighted subjects. Putative physiological mechanisms underlying such cross-modal recruitment will then be discussed. All these results have important implications for understanding the role of visual experience in shaping the development of occipital regions and may guide the implementation of rehabilitative methods such as sensory substitution or neural implants.


Blindness Plasticity Cross-modal Auditory Spatial 


  1. Allman BL, Meredith MA (2007) Multisensory processing in “unimodal” neurons: cross-modal subthreshold auditory effects in cat extrastriate visual cortex. J Neurophysiol 98:545–549PubMedCrossRefGoogle Scholar
  2. Amedi A, Raz N, Pianka P, Malach R, Zohary E (2003) Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci 6:758–766PubMedCrossRefGoogle Scholar
  3. Amedi A, Floel A, Knecht S, Zohary E, Cohen LG (2004) Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat Neurosci 7(11):1266–1270PubMedCrossRefGoogle Scholar
  4. Amedi A, Stern WM, Camprodon JA, Bermpohl F, Merabet L, Rotman S, Hemond C, Meijer P, Pascual-Leone A (2007) Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nat Neurosci 10:687–689PubMedCrossRefGoogle Scholar
  5. Arno P, Capelle C, Wanet-Defalque MC, Catalan-Ahumada M, Veraart C (1999) Auditory coding of visual patterns for the blind. Perception 28:1013–1029PubMedCrossRefGoogle Scholar
  6. Arno P, De Volder AG, Vanlierde A, Wanet-Defalque MC, Streel E, Robert A, Sanabria-Bohorquez S, Veraart C (2001a) Occipital activation by pattern recognition in the early blind using auditory substitution for vision. Neuroimage 13:632–645PubMedCrossRefGoogle Scholar
  7. Arno P, Vanlierde A, Streel E, Wanet-Defalque MC, Sanabria-Bohorquez SM, Veraart C (2001b) Auditory substitution of vision : pattern recognition by blind. Appl Cogn Psychol 15:509–519CrossRefGoogle Scholar
  8. Ashmead DH, Hill EW, Talor CR (1989) Obstacle perception by congenitally blind children. Percept Psychophys 46:425–433PubMedGoogle Scholar
  9. Ashmead DH, Wall RS, Ebinger KA, Eaton SB, Snook-Hill MM, Yang X (1998) Spatial hearing in children with visual disabilities. Perception 27:105–122PubMedCrossRefGoogle Scholar
  10. Axelrod S (1959) Effect of early blindness: performance of blind and sighted children on tactile and auditory tasks. American Foundation for the Blind, New YorkGoogle Scholar
  11. Bavelier D, Tomann A, Hutton C, Mitchell T, Corina D, Liu G, Neville H (2000) Visual attention to the periphery is enhanced in congenitally deaf individuals. J Neurosci 20:RC93PubMedGoogle Scholar
  12. Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadden L (1969) Vision substitution by tactile image projection. Nature 221:963–964PubMedCrossRefGoogle Scholar
  13. Berman NE (1991) Alterations of visual cortical connections in cats following early removal of retinal input. Brain Res Dev Brain Res 63:163–180PubMedCrossRefGoogle Scholar
  14. Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen LG (2000) Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex 10:529–534PubMedCrossRefGoogle Scholar
  15. Bourgeois JP, Rakic P (1993) Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 13:2801–2820PubMedGoogle Scholar
  16. Bourgeois JP, Rakic P (1996) Synaptogenesis in the occipital cortex of macaque monkey devoid of retinal input from early embryonic stages. Eur J NeuroSci 8:942–950PubMedCrossRefGoogle Scholar
  17. Buchel C (1998) Functional neuroimaging studies of Braille reading: cross-modal reorganization and its implications. Brain 121(Pt 7):1193–1194PubMedCrossRefGoogle Scholar
  18. Buchel C, Price C, Frackowiak RS, Friston K (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121(Pt 3):409–419PubMedCrossRefGoogle Scholar
  19. Burton H, McLaren DG (2006) Visual cortex activation in late-onset, Braille naive blind individuals: an fMRI study during semantic and phonological tasks with heard words. Neurosci Lett 392:38–42PubMedCrossRefGoogle Scholar
  20. Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME (2002a) Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophysiol 87:589–607PubMedGoogle Scholar
  21. Burton H, Snyder AZ, Diamond JB, Raichle ME (2002b) Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. J Neurophysiol 88:3359–3371PubMedCrossRefGoogle Scholar
  22. Cappe C, Barone P (2005) Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J NeuroSci 22:2886–2902PubMedCrossRefGoogle Scholar
  23. Capelle C, Trullemans C, Arno P, Veraart C (1998) A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans Biomed Eng 45:1279–1293PubMedCrossRefGoogle Scholar
  24. Chabot N, Charbonneau V, Laramee ME, Tremblay R, Boire D, Bronchti G (2008) Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci Lett 433:129–134PubMedCrossRefGoogle Scholar
  25. Changeux JP, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712PubMedCrossRefGoogle Scholar
  26. Changeux JP, Courrege P, Danchin A (1973) A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proc Natl Acad Sci USA 70:2974–2978PubMedCrossRefGoogle Scholar
  27. Clavagnier S, Falchier A, Kennedy H (2004) Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn Affect Behav Neurosci 4:117–126PubMedCrossRefGoogle Scholar
  28. Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, Dambrosia J, Honda M, Sadato N, Gerloff C, Catala MD, Hallett M (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389:180–183PubMedCrossRefGoogle Scholar
  29. Cohen LG, Weeks RA, Sadato N, Celnik P, Ishii K, Hallett M (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460PubMedCrossRefGoogle Scholar
  30. Collignon O, Renier L, Bruyer R, Tranduy D, Veraart C (2006) Improved selective and divided spatial attention in early blind subjects. Brain Res 1075(1):175–182PubMedCrossRefGoogle Scholar
  31. Collignon O, Lassonde M, Lepore F, Bastien D, Veraart C (2007) Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb Cortex 17:457–465PubMedCrossRefGoogle Scholar
  32. Collignon O, Davare M, De Volder AG, Poirier C, Olivier E, Veraart C (2008) Time-course of posterior parietal and occipital cortex contribution to sound localization. J Cogn Neurosci 20(8):1454–1463PubMedCrossRefGoogle Scholar
  33. De Volder AG, Bol A, Blin J, Robert A, Arno P, Grandin C, Michel C, Veraart C (1997) Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Res 750:235–244PubMedCrossRefGoogle Scholar
  34. De Volder AG, Toyama H, Kimura Y, Kiyosawa M, Nakano H, Vanlierde A, Wanet-Defalque MC, Mishina M, Oda K, Ishiwata K, Senda M (2001) Auditory triggered mental imagery of shape involves visual association areas in early blind humans. Neuroimage 14:129–139PubMedCrossRefGoogle Scholar
  35. Dehaene S, Cohen L (2007) Cultural recycling of cortical maps. Neuron 56:384–398PubMedCrossRefGoogle Scholar
  36. Dehay C, Kennedy H, Bullier J (1988) Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten. J Comp Neurol 272:68–89PubMedCrossRefGoogle Scholar
  37. Despres O, Candas V, Dufour A (2005) Auditory compensation in myopic humans: involvement of binaural, monaural, or echo cues? Brain Res 1041:56–65PubMedCrossRefGoogle Scholar
  38. Doron N, Wollberg Z (1994) Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA-HRP tracing study. Neuroreport 5:2697–2701PubMedCrossRefGoogle Scholar
  39. Doucet ME, Guillemot JP, Lassonde M, Gagne JP, Leclerc C, Lepore F (2004) Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp Brain Res 160(2):194–202PubMedCrossRefGoogle Scholar
  40. Doucet ME, Bergeron F, Lassonde M, Ferron P, Lepore F (2006) Cross-modal reorganization and speech perception in cochlear implant users. Brain 129:3376–3383PubMedCrossRefGoogle Scholar
  41. Dufour A, Gerard Y (2000) Improved auditory spatial sensitivity in near-sighted subjects. Brain Res Cogn Brain Res 10:159–165PubMedCrossRefGoogle Scholar
  42. Dufour A, Despres O, Candas V (2005) Enhanced sensitivity to echo cues in blind subjects. Exp Brain Res 165:515–519PubMedCrossRefGoogle Scholar
  43. Elbert T, Sterr A, Rockstroh B, Pantev C, Muller MM, Taub E (2002) Expansion of the tonotopic area in the auditory cortex of the blind. J Neurosci 22:9941–9944PubMedGoogle Scholar
  44. Facchini S, Aglioti SM (2003) Short term light deprivation increases tactile spatial acuity in humans. Neurology 60:1998–1999PubMedGoogle Scholar
  45. Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22:5749–5759PubMedGoogle Scholar
  46. Fieger A, Roder B, Teder-Salejarvi W, Hillyard SA, Neville HJ (2006) Auditory spatial tuning in late-onset blindness in humans. J Cogn Neurosci 18:149–157PubMedCrossRefGoogle Scholar
  47. Fine I, Wade AR, Brewer AA, May MG, Goodman DF, Boynton GM, Wandell BA, MacLeod DI (2003) Long-term deprivation affects visual perception and cortex. Nat Neurosci 6:915–916PubMedCrossRefGoogle Scholar
  48. Fishman MC, Michael P (1973) Integration of auditory information in the cat’s visual cortex. Vision Res 13:1415–1419PubMedCrossRefGoogle Scholar
  49. Frost DO, Metin C (1985) Induction of functional retinal projections to the somatosensory system. Nature 317:162–164PubMedCrossRefGoogle Scholar
  50. Frost DO, Boire D, Gingras G, Ptito M (2000) Surgically created neural pathways mediate visual pattern discrimination. Proc Natl Acad Sci USA 97:11068–11073PubMedCrossRefGoogle Scholar
  51. Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285PubMedCrossRefGoogle Scholar
  52. Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490PubMedCrossRefGoogle Scholar
  53. Gothe J, Brandt SA, Irlbacher K, Roricht S, Sabel BA, Meyer BU (2002) Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125:479–490PubMedCrossRefGoogle Scholar
  54. Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F (2005) A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol 3:e27PubMedCrossRefGoogle Scholar
  55. Gregory RL, Wallace JG (1963) Experimental psychological society monograph. Heffer and Sons, CambridgeGoogle Scholar
  56. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677PubMedCrossRefGoogle Scholar
  57. Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88:1621–1625PubMedCrossRefGoogle Scholar
  58. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353PubMedGoogle Scholar
  59. Hebb DO (1949) The organization of behavior. John Wiley, New YorkGoogle Scholar
  60. Huttenlocher PR (1966) Development of neuronal activity in neocortex of the kitten. Nature 211:91–92PubMedCrossRefGoogle Scholar
  61. Huttenlocher PR, Court de (1987) The development of synapses in striate cortex of man. Hum Neurobiol 6:1–9PubMedGoogle Scholar
  62. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178PubMedCrossRefGoogle Scholar
  63. Innocenti GM, Clarke S (1984) Bilateral transitory projection to visual areas from auditory cortex in kittens. Brain Res 316:143–148PubMedGoogle Scholar
  64. Innocenti GM, Berbel P, Clarke S (1988) Development of projections from auditory to visual areas in the cat. J Comp Neurol 272:242–259PubMedCrossRefGoogle Scholar
  65. Izraeli R, Koay G, Lamish M, Heicklen-Klein AJ, Heffner HE, Heffner RS, Wollberg Z (2002) Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur J NeuroSci 15:693–712PubMedCrossRefGoogle Scholar
  66. Karlen SJ, Kahn DM, Krubitzer L (2006) Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142:843–858PubMedCrossRefGoogle Scholar
  67. Kastner S, De WP, Ungerleider LG (2000) Texture segregation in the human visual cortex: a functional MRI study. J Neurophysiol 83:2453–2457PubMedGoogle Scholar
  68. Kauffman T, Theoret H, Pascual-Leone A (2002) Braille character discrimination in blindfolded human subjects. Neuroreport 13:571–574PubMedCrossRefGoogle Scholar
  69. Kennedy H, Bullier J, Dehay C (1989) Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc Natl Acad Sci USA 86:8093–8097PubMedCrossRefGoogle Scholar
  70. King AJ, Parsons CH (1999) Improved auditory spatial acuity in visually deprived ferrets. Eur J Neurosci 11:3945–3956PubMedCrossRefGoogle Scholar
  71. Knudsen EI (1988) Early blindness results in a degraded auditory map of space in the optic tectum of the barn owl. Proc Natl Acad Sci USA 85(16):6211–6214PubMedCrossRefGoogle Scholar
  72. Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70:1717–1721PubMedGoogle Scholar
  73. Kujala T, Alho K, Paavilainen P, Summala H, Naatanen R (1992) Neural plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr Clin Neurophysiol 84:469–472PubMedCrossRefGoogle Scholar
  74. Kujala T, Huotilainen M, Sinkkonen J, Ahonen AI, Alho K, Hamalainen MS, Ilmoniemi RJ, Kajola M, Knuutila JE, Lavikainen J (1995) Visual cortex activation in blind humans during sound discrimination. Neurosci Lett 183:143–146PubMedCrossRefGoogle Scholar
  75. Kujala T, Alho K, Huotilainen M, Ilmoniemi RJ, Lehtokoski A, Leinonen A, Rinne T, Salonen O, Sinkkonen J, Standertskjold-Nordenstam CG, Naatanen R (1997) Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness. Psychophysiology 34:213–216PubMedCrossRefGoogle Scholar
  76. Kupers R, Pappens M, de Noordhout AM, Schoenen J, Ptito M, Fumal A (2007) rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. Neurology 68:691–693PubMedCrossRefGoogle Scholar
  77. Leclerc C, Saint-Amour D, Lavoie ME, Lassonde M, Lepore F (2000) Brain functional reorganization in early blind humans revealed by auditory event-related potentials. Neuroreport 11:545–550PubMedCrossRefGoogle Scholar
  78. Leclerc C, Segalowitz SJ, Desjardins J, Lassonde M, Lepore F (2005) EEG coherence in early-blind humans during sound localization. Neurosci Lett 376:154–159PubMedCrossRefGoogle Scholar
  79. Lee DS, Lee JS, Oh SH, Kim SK, Kim JW, Chung JK, Lee MC, Kim CS (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150PubMedCrossRefGoogle Scholar
  80. Lessard N, Pare M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395:278–280PubMedCrossRefGoogle Scholar
  81. Lewald J (2002a) Vertical sound localization in blind humans. Neuropsychologia 40:1868–1872PubMedCrossRefGoogle Scholar
  82. Lewald J (2002b) Opposing effects of head position on sound localization in blind and sighted human subjects. Eur J Neurosci 15:1219–1224PubMedCrossRefGoogle Scholar
  83. Lewald J (2007) More accurate sound localization induced by short-term light deprivation. Neuropsychologia 45:1215–1222PubMedCrossRefGoogle Scholar
  84. Lewald J, Meister IG, Weidemann J, Topper R (2004) Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci 16:828–838PubMedCrossRefGoogle Scholar
  85. Locke JC (1954) Retrolental fibroplasia definitive role of oxygen administration in its etiology. AMA Arch Ophthalmol 51:73–79PubMedGoogle Scholar
  86. Meijer PB (1992) An experimental system for auditory image representations. IEEE Trans Biomed Eng 39:112–121PubMedCrossRefGoogle Scholar
  87. Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19:8560–8572PubMedGoogle Scholar
  88. Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A (2005) What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci 6:71–77PubMedCrossRefGoogle Scholar
  89. Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res 14:115–128PubMedCrossRefGoogle Scholar
  90. Morrell F (1972) Visual system’s view of acoustic space. Nature 238:44–46PubMedCrossRefGoogle Scholar
  91. Munte TF, Kohlmetz C, Nager W, Altenmuller E (2001) Neuroperception. Superior auditory spatial tuning in conductors. Nature 409:580PubMedCrossRefGoogle Scholar
  92. Neville HJ, Lawson D (1987) Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res 405:268–283PubMedCrossRefGoogle Scholar
  93. Pascual-Leone A, Hamilton R (2001) The metamodal organization of the brain. Prog Brain Res 134:427–445PubMedCrossRefGoogle Scholar
  94. Pascual-Leone A, Torres F (1993) Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116(Pt 1):39–52PubMedCrossRefGoogle Scholar
  95. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401PubMedCrossRefGoogle Scholar
  96. Piche M, Robert S, Miceli D, Bronchti G (2004) Environmental enrichment enhances auditory takeover of the occipital cortex in anophthalmic mice. Eur J Neurosci 20:3463–3472PubMedCrossRefGoogle Scholar
  97. Piche M, Chabot N, Bronchti G, Miceli D, Lepore F, Guillemot JP (2007) Auditory responses in the visual cortex of neonatally enucleated rats. Neuroscience 145:1144–1156PubMedCrossRefGoogle Scholar
  98. Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WH, Cohen L, Guazzelli M, Haxby JV (2004) Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci USA 101:5658–5663PubMedCrossRefGoogle Scholar
  99. Pitskel NB, Merabet LB, Ramos-Estebanez C, Kauffman T, Pascual-Leone A (2007) Time-dependent changes in cortical excitability after prolonged visual deprivation. Neuroreport 18:1703–1707PubMedGoogle Scholar
  100. Poirier C, Collignon O, Devolder AG, Renier L, Vanlierde A, Tranduy D, Scheiber C (2005) Specific activation of the V5 brain area by auditory motion processing: an fMRI study. Brain Res Cogn Brain Res 25:650–658PubMedCrossRefGoogle Scholar
  101. Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, Tranduy D, Veraart C, De Volder AG (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31:279–285PubMedCrossRefGoogle Scholar
  102. Poirier C, De Volder AG, Scheiber C (2007) What neuroimaging tells us about sensory substitution. Neurosci Biobehav Rev 31:1064–1070PubMedCrossRefGoogle Scholar
  103. Proulx MJ, Stoerig P, Ludowig E, Knoll I (2008) Seeing ‘where’ through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution. PLoS ONE 3:e1840PubMedCrossRefGoogle Scholar
  104. Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128(Pt 3):606–614PubMedCrossRefGoogle Scholar
  105. Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235PubMedCrossRefGoogle Scholar
  106. Rauschecker JP (1995) Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci 18:36–43PubMedCrossRefGoogle Scholar
  107. Rauschecker JP, Kniepert U (1994) Auditory localization behaviour in visually deprived cats. Eur J Neurosci 6:149–160PubMedCrossRefGoogle Scholar
  108. Rauschecker JP, Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. J Neurosci 13:4538–4548PubMedGoogle Scholar
  109. Renier L, Collignon O, Poirier C, Tranduy D, Vanlierde A, Bol A, Veraart C, De Volder AG (2005) Cross-modal activation of visual cortex during depth perception using auditory substitution of vision. Neuroimage 26:573–580PubMedCrossRefGoogle Scholar
  110. Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP, Landini L, Guazzelli M, Bicchi A, Haxby JV, Pietrini P (2007) The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex 17:2933–2939PubMedCrossRefGoogle Scholar
  111. Rice CE, Feinstein SH (1965) Sonar system of the blind: size discrimination. Science 148:1107–1108PubMedCrossRefGoogle Scholar
  112. Rice CE, Feinstein SH, Schusterman RJ (1965) Echo-detection ability of the blind: size and distance factors. J Exp Psychol 70:246–255PubMedCrossRefGoogle Scholar
  113. Rock I, Halper F (1969) Form perception without a retinal image. Am J Psychol 82:425–440PubMedCrossRefGoogle Scholar
  114. Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol 50:19–26PubMedCrossRefGoogle Scholar
  115. Roder B, Rosler F (2003) Memory for environmental sounds in sighted, congenitally blind and late blind adults: evidence for cross-modal compensation. Int J Psychophysiol 50:27–39PubMedCrossRefGoogle Scholar
  116. Roder B, Teder-Salejarvi W, Sterr A, Rosler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400:162–166PubMedCrossRefGoogle Scholar
  117. Roder B, Rosler F, Neville HJ (2000) Event-related potentials during auditory language processing in congenitally blind and sighted people. Neuropsychologia 38:1482–1502PubMedCrossRefGoogle Scholar
  118. Roder B, Rosler F, Neville HJ (2001) Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. Brain Res Cogn Brain Res 11:289–303PubMedCrossRefGoogle Scholar
  119. Röder B, Stock O, Bien S, Neville H, Rösler F (2002) Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci 16(5):930–936PubMedCrossRefGoogle Scholar
  120. Roe AW, Pallas SL, Hahm JO, Sur M (1990) A map of visual space induced in primary auditory cortex. Science 250:818–820PubMedCrossRefGoogle Scholar
  121. Roe AW, Pallas SL, Kwon YH, Sur M (1992) Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. J Neurosci 12:3651–3664PubMedGoogle Scholar
  122. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380:526–528PubMedCrossRefGoogle Scholar
  123. Sadato N, Okada T, Honda M, Yonekura Y (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16:389–400PubMedCrossRefGoogle Scholar
  124. Saenz M, Lewis LB, Huth AG, Fine I, Koch C (2008) Visual motion area mt+/v5 responds to auditory motion in human sight-recovery subjects. J Neurosci 28:5141–5148PubMedCrossRefGoogle Scholar
  125. Sathian K (2005) Visual cortical activity during tactile perception in the sighted and the visually deprived. Dev Psychobiol 46(3):279–286PubMedCrossRefGoogle Scholar
  126. Simon HJ, Divenyi PL, Lotze A (2002) Lateralization of narrow-band noise by blind and sighted listeners. Perception 31:855–873PubMedCrossRefGoogle Scholar
  127. Stein BE, Meredith MA (1993) The merging of the senses. MIT, CambridgeGoogle Scholar
  128. Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E (1998) Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosci 18:4417–4423PubMedGoogle Scholar
  129. Stevens AA, Snodgrass M, Schwartz D, Weaver K (2007) Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance. J Neurosci 27(40):10734–10741PubMedCrossRefGoogle Scholar
  130. Strelow ER, Brabyn JA (1982) Locomotion of the blind controlled by natural sound cues. Perception 11:635–640PubMedCrossRefGoogle Scholar
  131. Sur M, Garraghty PE, Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–1441PubMedCrossRefGoogle Scholar
  132. Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedGoogle Scholar
  133. Van Wanrooij MM, Van Opstal AJ (2004) Contribution of head shadow and pinna cues to chronic monaural sound localization. J Neurosci 24:4163–4171PubMedCrossRefGoogle Scholar
  134. Vanlierde A, De Volder AG, Wanet-Defalque MC, Veraart C (2003) Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans. Neuroimage 19:698–709PubMedCrossRefGoogle Scholar
  135. Veraart C, De Volder AG, Wanet-Defalque MC, Bol A, Michel C, Goffinet AM (1990) Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res 510:115–121PubMedCrossRefGoogle Scholar
  136. Veraart C, Duret F, Brelen M, Oozeer M, Delbeke J (2004) Vision rehabilitation in the case of blindness. Expert Rev Med Devices 1:139–153PubMedCrossRefGoogle Scholar
  137. von Melchner L, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404:871–876CrossRefGoogle Scholar
  138. Voss P, Lassonde M, Gougoux F, Fortin M, Guillemot JP, Lepore F (2004) Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol 14:1734–1738PubMedCrossRefGoogle Scholar
  139. Voss P, Gougoux F, Lassonde M, Zatorre RJ, Lepore F (2006) A positron emission tomography study during auditory localization by late-onset blind individuals. Neuroreport 17:383–388PubMedCrossRefGoogle Scholar
  140. Voss P, Gougoux F, Zatorre RJ, Lassonde M, Lepore F (2008) Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. Neuroimage 40:746–758PubMedCrossRefGoogle Scholar
  141. Wanet-Defalque MC, Veraart C, De Volder A, Metz R, Michel C, Dooms G, Goffinet A (1988) High metabolic activity in the visual cortex of early blind human subjects. Brain Res 446:369–373PubMedCrossRefGoogle Scholar
  142. Warren DH, Cleaves WT (1971) Visual-proprioceptive interaction under large amounts of conflict. J Exp Psychol 90:206–214PubMedCrossRefGoogle Scholar
  143. Weaver KE, Stevens AA (2007) Attention and sensory interactions within the occipital cortex in the early blind: an fMRI study. J Cogn Neurosci 19(2):315–330PubMedCrossRefGoogle Scholar
  144. Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG, Hallett M, Rauschecker JP (2000) A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20:2664–2672PubMedGoogle Scholar
  145. Wiesel TN, Hubel DH (1965) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28:1060–1072PubMedGoogle Scholar
  146. Wiesel TN, Hubel DH (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol 158:307–318PubMedCrossRefGoogle Scholar
  147. Wittenberg GF, Werhahn KJ, Wassermann EM, Herscovitch P, Cohen LG (2004) Functional connectivity between somatosensory and visual cortex in early blind humans. Eur J Neurosci 20:1923–1927PubMedCrossRefGoogle Scholar
  148. Yabe T, Kaga K (2005) Sound lateralization test in adolescent blind individuals. Neuroreport 16:939–942PubMedCrossRefGoogle Scholar
  149. Yaka R, Yinon U, Wollberg Z (1999) Auditory activation of cortical visual areas in cats after early visual deprivation. Eur J Neurosci 11:1301–1312PubMedCrossRefGoogle Scholar
  150. Zimmer U, Lewald J, Erb M, Grodd W, Karnath HO (2004) Is there a role of visual cortex in spatial hearing? Eur J Neurosci 20:3148–3156PubMedCrossRefGoogle Scholar
  151. Zwiers MP, Van Opstal AJ, Cruysberg JR (2001) A spatial hearing deficit in early-blind humans. J Neurosci 21:RC142–RC145PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Olivier Collignon
    • 1
    • 2
  • Patrice Voss
    • 1
  • Maryse Lassonde
    • 1
    • 3
  • Franco Lepore
    • 1
    • 3
    • 4
  1. 1.Centre de Recherche en Neuropsychologie et Cognition (CERNEC)Université de MontréalMontrealCanada
  2. 2.Neural Rehabilitation Engineering Laboratory, Centre for Research in Neurosciences (CRN)Université catholique de LouvainBrusselsBelgium 
  3. 3.Centre de Recherche CHU Sainte-JustineMontrealCanada
  4. 4.Département de Psychologie, CERNECUniversité de MontréalMontrealCanada

Personalised recommendations