Advertisement

Experimental Brain Research

, Volume 191, Issue 3, pp 289–300 | Cite as

Effect of microgravity on gene expression in mouse brain

  • Antonio FrigeriEmail author
  • Dumitru A. Iacobas
  • Sanda Iacobas
  • Grazia Paola Nicchia
  • Jean Francois Desaphy
  • Diana Conte Camerino
  • Maria Svelto
  • David C. Spray
Research Article

Abstract

Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by GeneMAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes.

Keywords

Microgravity Hindlimb-unloaded cDNA microarray Brain Space flight Gravitational force Microgravitational adaptations 

Abbreviations

CT

Control

GES

Gene expression stability

HU

Hindlimb-unloaded

REV

Relative estimated variability

CSD

Cell cycle, shape, differentiation, death

[A apoptosis, C cell cycle (cyclin), D development, differentiation, organogenesis, G growth factors, hormones, cytokines, S shape, N oNcogenes, O others]

CYT

Cytoskeleton

ENE

Energy metabolism

MIT

Mitochondrial proteins involved in cyclic acid cycle, respiratory chain

(L lipid metabolism, D degradation such as in peroxisomes, proteasome ubiquitination, G glycolysis, glycogenesis, O others)

JAE

Cell junction, adhesion, extracellular matrix

[A antigens, integrins, G globulins and blood, M extracellular matrix, laminin, J junction and associated proteins, P proteases (such as metalloproteinases), O others]

RNA

RNA processing

(M mRNA, R rRNA, T tRNA, MIT mitochondrial RNA)

SIG

Cell signaling (G-proteins coupled receptors PKA PKC cAMP calcium MAPK SH2 SH3 Ca-binding proteins)

TIC

Transport of small molecules and ions into the cells (transporters ion channels ionotropic receptors)

TRA

Transcription

[D DNA transcription factors, P DNA processing (such as polymerases), O others]

TWC

Transport of ions/molecules within the cells (vesicles, kinesin, endosomes, proteosomes, protein folding, lysosomes, nuclear transport)

UNK

Function not yet assigned

Notes

Acknowledgments

The financial support from the Italian Space Agency (I/R/372/02, OSMA) is gratefully acknowledged.

Supplementary material

221_2008_1523_MOESM1_ESM.doc (436 kb)
All regulated genes in HU versus control brain (DOC 436 kb)

References

  1. Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R1787–R1797PubMedGoogle Scholar
  2. Angulo E, Noé V, Casadó V, Mallol J, Gomez-Isla T, Lluis C, Ferrer I, Ciudad CJ, Franco R (2004) Up-regulation of the Kv34 potassium channel subunit in early stages of Alzheimer’s disease. J Neurochem 91:547–557PubMedCrossRefGoogle Scholar
  3. Belichenko PV (1998) Quantitative analysis of dendritic spines of pyramidal neurons in the layers of the sensorimotor cortex of rats exposed to the Cosmos-1667 biosputnik. Biull Eksp Biol Med 105:736–738Google Scholar
  4. Bleeker MW, Hopman MT, Rongen GA, Smits P (2004) Unilateral lower limb suspension can cause deep venous thrombosis. Am J Physiol Regul Integr Comp Physiol 286:R1176–R1177PubMedGoogle Scholar
  5. Brooke RE, Atkinson L, Batten TF, Deuchars SA, Deuchars J (2004) Association of potassium channel Kv34 subunits with pre- and post-synaptic structures in brainstem and spinal cord. Neuroscience 126:1001–1010PubMedCrossRefGoogle Scholar
  6. Broze GJ (1998) Tissue factor pathway inhibitor gene disruption. Blood Coagul Fibrinolysis 9:S89–S92PubMedGoogle Scholar
  7. Buettner R, Papoutsoglou G, Scemes E, Spray DC, Dermietzel R (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc Natl Acad Sci USA 97:3201–3206PubMedCrossRefGoogle Scholar
  8. Cavallaro S, D’Agata V, Manickam P, Dufour F, Alkon DL (2002) Memory-specific temporal profiles of gene expression in the hippocampus. Proc Natl Acad Sci USA 99:16279–16284PubMedCrossRefGoogle Scholar
  9. Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL (2003) Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci 23:7107–7116PubMedGoogle Scholar
  10. Convertino VA, Doerr DF, Mathes KL, Stein SL, Buchanan P (1989) Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity. Aviat Space Environ Med 60:653–658PubMedGoogle Scholar
  11. Cooper DN (1991) The molecular genetics of familial venous thrombosis. Blood Rev 5:55–70PubMedCrossRefGoogle Scholar
  12. Cooper EC (2001) Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia 5:49–54CrossRefGoogle Scholar
  13. Cottrell GS, Coelho AM, Bunnett NW (2002) Protease-activated receptors: the role of cell-surface proteolysis in signaling. Essays Biochem 38:169–183PubMedGoogle Scholar
  14. Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30:10363–10370PubMedCrossRefGoogle Scholar
  15. DeFelipe J, Arellano JI, Merchán-Pérez A, González-Albo MC, Walton K, Llinás R (2002) Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex. Cereb Cortex 12:883–891PubMedCrossRefGoogle Scholar
  16. Del Signore A, Mandillo S, Rizzo A, Di Mauro E, Mele A, Negri R, Oliverio A, Paggi P (2004) Hippocampal gene expression is modulated by hypergravity. Eur J Neurosci 19:667–677PubMedCrossRefGoogle Scholar
  17. Desaphy JF, Pierno S, Liantonio A, De Luca A, Leoty C, Conte Camerino D (1998) Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity. J Gravit Physiol 5:77–78Google Scholar
  18. De Santo NG, Christensen NJ, Drummer C, Kramer HJ, Regnard J, Heer M, Cirillo M, Norsk P (2001) Fluid balance and kidney function in space: introduction. Am J Kidney Dis 38:664–667PubMedCrossRefGoogle Scholar
  19. Durzan DJ, Ventimiglia F, Havel L (1998) Taxane recovery from cells of Taxus in micro- and hypergravity. Acta Astronaut 42:455–463PubMedCrossRefGoogle Scholar
  20. Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140PubMedCrossRefGoogle Scholar
  21. Esmon CT (2001) Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit Care Med 29:S48–S51PubMedCrossRefGoogle Scholar
  22. Fishman RA (1992) Cerebrospinal fluid in disease of the nervous system. Saunders, PhiladelphiaGoogle Scholar
  23. Frigeri A, Nicchia GP, Desaphy JF, Pierno S, De Luca A, Camerino DC, Svelto M (2001) Muscle loading modulates aquaporin-4 expression in skeletal muscle. FASEB J 15:1282–1284PubMedCrossRefGoogle Scholar
  24. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805PubMedCrossRefGoogle Scholar
  25. Grotewiel MS, Beck CD, Wu CF, Greenspan RJ (1998) Integrin-mediated short-term memory in Drosophila. Nature 18:7847–7855Google Scholar
  26. Grunwald T, Beck H, Lehnertz K, Blümcke I, Pezer N, Kurthen M, Fernández G, Van Roost D, Heinze HJ, Kutas M, Elger CE (1999) Evidence relating human verbal memory to hippocampal n-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 96:12085–12089PubMedCrossRefGoogle Scholar
  27. Hansen HH, Ebbesen C, Mathiesen C, Weikop P, Rønn LC, Waroux O, Scuvée-Moreau J, Seutin V, Mikkelsen JD (2006) The KCNQ channel opener retigabine inhibits the activity of mesencephalic dopaminergic systems of the rat. J Pharmacol Exp Ther 318:1006–1019PubMedCrossRefGoogle Scholar
  28. Hargens AR, Steakai J, Johansson C, Tipton CM (1984) Tissue fluid shift, forelimb loading, and tail tension in tail suspended rats. Physiologist 27:S37–S38Google Scholar
  29. Hamilton JR, Cornelissen I, Coughlin SR (2004) Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2:1429–1435PubMedCrossRefGoogle Scholar
  30. Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiss RG, Kraus R, Timin EN (2000) Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol 528:237–249PubMedCrossRefGoogle Scholar
  31. Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6:787–799PubMedCrossRefGoogle Scholar
  32. Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157:271–279PubMedCrossRefGoogle Scholar
  33. Hollister RD, Kisiel W, Hyman BT (1996) Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer’s disease. Brain Res 728:13–29PubMedCrossRefGoogle Scholar
  34. Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109Google Scholar
  35. Iacobas DA, Iacobas S, Li W, Zoidl G, Dermietzel R, Spray DC (2005) Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Gen 2:211–223Google Scholar
  36. Iacobas DA, Fan C, Iacobas S, Spray DC, Haddad GG (2006) Transcriptomic changes in developing kidney exposed to chronic hypoxia. Biochem Biophys Res Commun 349:329–338PubMedCrossRefGoogle Scholar
  37. Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94:168–184CrossRefGoogle Scholar
  38. Iacobas DA, Iacobas S, Werner P, Scemes E, Spray DC (2008a) Alteration of transcriptomic networks in adoptive transfer experimental autoimmune encephalomyelitis. Front Integr Neurosci 1:10. doi: 10.3389/neuro.07/010.2007 Google Scholar
  39. Iacobas DA, Fan C, Iacobas S, Haddad GG (2008b) Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics 8(3):265–275PubMedCrossRefGoogle Scholar
  40. Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103PubMedCrossRefGoogle Scholar
  41. Kamp P, Strathmann A, Ragg H (2001) Heparin cofactor II, antithrombin-beta and their complexes with thrombin in human tissues. Thromb Res 101:483–491PubMedCrossRefGoogle Scholar
  42. Kimzey SL, Ritzmann SE, Mengelm CE, Fischer CL (1975) Skylab experiment results: hematology studies. Acta Astronaut 2:141–154PubMedCrossRefGoogle Scholar
  43. Kramar EA, Bernard JA, Gall CM, Lynch G (2003) Integrins modulate fast excitatory transmission at hippocampal synapses. J Biol Chem 270:10722–10730CrossRefGoogle Scholar
  44. Lay AJ, Liang Z, Rosen ED, Castellino FJ (2005) Mice with a severe deficiency in protein C display prothrombotic and proinflammatory phenotypes and compromised maternal reproductive capabilities. J Clin Invest 115:1552–1561PubMedCrossRefGoogle Scholar
  45. Ledesma MD, Da Silva JS, Schevchenko A, Wilm M, Dotti CG (2003) Proteomic characterisation of neuronal sphingolipid-cholesterol microdomains: role in plasminogen activation. Brain Res 987:107–116PubMedCrossRefGoogle Scholar
  46. Lewis ML, Hughes-Fulford M (2000) Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditions. J Cell Biochem 77:127–134PubMedCrossRefGoogle Scholar
  47. Lin B, Arai AC, Lynch G, Gall CM (2003) Integrins regulate NMDA receptor-mediated synaptic currents. J Neurophysiol 89:2874–2878PubMedCrossRefGoogle Scholar
  48. Ling Q, Jacovina AT, Deora A, Febbraio M, Simantov R, Silverstein RL, Hempstead B, Mark WH, Hajjar KA (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 113:38–48PubMedGoogle Scholar
  49. Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA (1999) Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med 340:994–1004PubMedCrossRefGoogle Scholar
  50. Murakami M, Matsui H, Shiraiwa T, Suzuki T, Sasano H, Takahashi E, Kashiwayanagi M (2006) Decreases in pheromonal responses at the accessory olfactory bulb of mice with a deficiency of the alpha1B or beta3 subunits of voltage-dependent Ca2+-channels. Biol Pharm Bull 29:437–442PubMedCrossRefGoogle Scholar
  51. Murakami M, Nakagawasai O, Yanai K, Nunoki K, Tan-No K, Tadano T, Iijima T (2007) Modified behavioral characteristics following ablation of the voltage-dependent calcium channel beta3 subunit. Brain Res 1160:102–112PubMedCrossRefGoogle Scholar
  52. Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction Brain. Res Brain Res Rev 26:230–235CrossRefGoogle Scholar
  53. Nose K, Shibanuma M (1994) Induction of early response genes by hypergravity in cultured mouse osteoblastic cells (MC3T3-E1). Exp Cell Res 211:168–170PubMedCrossRefGoogle Scholar
  54. Ohya S, Tanaka M, Oku T, Asai Y, Watanabe M, Giles WR, Imaizumi Y (1997) Molecular cloning and tissue distribution of an alternatively spliced variant of an A-type K+ channel alpha-subunit, Kv4.3 in the rat. FEBS Lett 420:47–53PubMedCrossRefGoogle Scholar
  55. Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621PubMedCrossRefGoogle Scholar
  56. Park SH, Suh YS, Kim H, Rhyu IJ, Kim HL (1997) Chromosomal localization and neural distribution of voltage dependent calcium channel beta 3 subunit gene. Mol Cells 7:200–203PubMedGoogle Scholar
  57. Pompeiano O, d’Ascanio P, Balaban E, Centini C, Pompeiano M (2004) Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience 124:53–69PubMedCrossRefGoogle Scholar
  58. Ragg H, Preibisch G (1988) Structure and expression of the gene coding for the human serpin hLS2. J Biol Chem 263:12129–12134PubMedGoogle Scholar
  59. Rahmann H, Slenzka K, Kortje KH, Hilbig R (1992) Synaptic plasticity and gravity: ultrastructural, biochemical and physico-chemical fundamentals. Adv Space Res 12:63–72PubMedCrossRefGoogle Scholar
  60. Roche KW, Standley S, McCallum J, Ly CD, Ehlers MD (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802PubMedCrossRefGoogle Scholar
  61. Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL, Wilson BL, Kim H, Barnes S, Kulkarni A, Pellis N, Ramesh GT (2006) Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res 5:548–553PubMedCrossRefGoogle Scholar
  62. Sarkar P, Sarkar S, Ramesh V, Kim H, Barnes S, Kulkarni A, Hall JC, Wilson BL, Thomas RL, Pellis NR, Ramesh GT (2008) Proteomic analysis of mouse hypothalamus under simulated microgravity. Neurochem Res May 13 [Epub ahead of print] PMID: 18473167Google Scholar
  63. Schwartz M, Schaller M, Ginsberg M (1995) Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 11:549–599PubMedCrossRefGoogle Scholar
  64. Stephenson FA, Cousins SL, Kenny AV (2008) Assembly and forward trafficking of NMDA receptors. Mol Membr Biol 25:311–320PubMedCrossRefGoogle Scholar
  65. Suo Z, Wu M, Citron BA, Gao C, Festoff BW (2003) Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. Biol Chem 278:31177–31183CrossRefGoogle Scholar
  66. Tardy-Poncet B, Tardy B, Laporte S, Mismetti P, Amiral J, Piot M, Reynaud J, Campos L, Decousus H (2003) Poor anticoagulant response to tissue factor pathway inhibitor in patients with venous thrombosis. Thromb Haemost 1:507–510CrossRefGoogle Scholar
  67. Tong Q, Menon AG, Stockand JD (2006) Functional polymorphisms in the alpha-subunit of the human epithelial Na+ channel increase activity. Am J Physiol Renal Physiol 290:F821–F827PubMedCrossRefGoogle Scholar
  68. Traina G, Bernardi R, Rizzo M, Calvani M, Durante M, Brunelli M (2006) Acetyl-l-carnitine up-regulates expression of voltage-dependent anion channel in the rat brain. Neurochem Int 48:673–678PubMedCrossRefGoogle Scholar
  69. Uno Y, Horii A, Uno A, Fuse Y, Fukushima M, Doi K, Kubo T (2002) Quantitative changes in mRNA expression of glutamate receptors in the rat peripheral and central vestibular systems following hypergravity. J Neurochem 81:1308–1317PubMedCrossRefGoogle Scholar
  70. Weeber J, Levy M, Sampson MJ, Anflous K, Armstron DL, Brown SE, Sweatt JD, Craigen WJ (2002) The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 277:18891–18897PubMedCrossRefGoogle Scholar
  71. Westrick RJ, Bodary PF, Xu Z, Shen YC, Broze GJ, Eitzman DT (2001) Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 103:3044–3046PubMedCrossRefGoogle Scholar
  72. Yoshioka R, Soga K, Wakabayashi K, Takeba G, Hoson T (2001) Hypergravity-induced changes in gene expression in Arabidopsis. Biol Sci Space 15:260–261PubMedGoogle Scholar
  73. Young LR (1995) Effects of orbital space flight on vestibular reflexes and perception. Acta Astronaut 36:409–413PubMedCrossRefGoogle Scholar
  74. Zhang GS, Mehringer JH, Van Deerlin VMD, Kozak CA, Tollefsen DM (1994) Murine heparin cofactor II: purification, cDNA sequence, expression and gene structure. Biochemistry 33:3632–3642PubMedCrossRefGoogle Scholar
  75. Zhao WQ, Waisman DM, Grimaldi M (2004) Specific localization of the annexin II heterotetramer in brain lipid raft fractions and its changes in spatial learning. J Neurochem 90:609–620PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Antonio Frigeri
    • 1
    Email author
  • Dumitru A. Iacobas
    • 2
  • Sanda Iacobas
    • 2
  • Grazia Paola Nicchia
    • 1
  • Jean Francois Desaphy
    • 3
  • Diana Conte Camerino
    • 3
  • Maria Svelto
    • 1
  • David C. Spray
    • 2
  1. 1.Department of General and Environmental Physiology, Centre of Excellence in Comparative Genomics (CEGBA)University of BariBariItaly
  2. 2.Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of PharmacobiologyUniversity of BariBariItaly

Personalised recommendations