Advertisement

Experimental Brain Research

, Volume 191, Issue 2, pp 187–195 | Cite as

Local motion inside an object affects pointing less than smooth pursuit

  • Dirk KerzelEmail author
  • Angélique Gauch
  • Blandine Ulmann
Research Article

Abstract

During smooth pursuit eye movements, briefly presented objects are mislocalized in the direction of motion. It has been proposed that the localization error is the sum of the pursuit signal and the retinal motion signal in a ~200 ms interval after flash onset. To evaluate contributions of retinal motion signals produced by the entire object (global motion) and elements within the object (local motion), we asked observers to reach to flashed Gabor patches (Gaussian-windowed sine-wave gratings). Global motion was manipulated by varying the duration of a stationary flash, and local motion was manipulated by varying the motion of the sine-wave. Our results confirm that global retinal motion reduces the localization error. The effect of local retinal motion on object localization was far smaller, even though local and global motion had equal effects on eye velocity. Thus, local retinal motion has differential access to manual and oculomotor control circuits. Further, we observed moderate correlations between smooth pursuit gain and localization error.

Keywords

Smooth pursuit Localization Sensory-motor integration 

Notes

Acknowledgments

D. Kerzel and A. Gauch were supported by the Swiss National Foundation (SNF 10011-107768/1).

References

  1. Brenner E, Smeets JB (1997) Fast responses of the human hand to changes in target position. J Mot Behav 29(4):297–310PubMedCrossRefGoogle Scholar
  2. Chung STL, Patel SS, Bedell HE, Yilmaz O (2007) Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli. Vis Res 47(2):231–243PubMedCrossRefGoogle Scholar
  3. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159CrossRefPubMedGoogle Scholar
  4. Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177(1):7–11PubMedCrossRefGoogle Scholar
  5. De Valois RL, De Valois KK (1991) Vernier acuity with stationary moving Gabors. Vis Res 31(9):1619–1626PubMedCrossRefGoogle Scholar
  6. Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389(6653):845–848PubMedCrossRefGoogle Scholar
  7. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191PubMedGoogle Scholar
  8. Gielen CC, van den Heuvel PJ, van Gisbergen JA (1984) Coordination of fast eye and arm movements in a tracking task. Exp Brain Res 56(1):154–161PubMedCrossRefGoogle Scholar
  9. Gomi H, Abekawa N, Nishida Sy (2006) Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. J Neurosci 26(20):5301–5308PubMedCrossRefGoogle Scholar
  10. Hazelhoff FF, Wiersma H (1924) Die Wahrnehmungszeit. Erster Artikel: Die Bestimmung der Schnelligkeit der Wahrnehmung von Lichtreizen nach der Lokalisationsmethode. [The time to perception: first article: the determination of the speed of perception of light stimuli with the localization method]. Z Psychol 96:171–188Google Scholar
  11. Kaminiarz A, Krekelberg B, Bremmer F (2007) Localization of visual targets during optokinetic eye movements. Vis Res 47(6):869–878PubMedCrossRefGoogle Scholar
  12. Kerzel D (2000) Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vis Res 40(27):3703–3715PubMedCrossRefGoogle Scholar
  13. Kerzel D, Gegenfurtner KR (2005) Motion-induced illusory displacement reexamined: differences between perception and action? Exp Brain Res 162(2):191–201PubMedCrossRefGoogle Scholar
  14. Kerzel D, Aivar MP, Ziegler NE, Brenner E (2006) Mislocalization of flashes during smooth pursuit hardly depends on the lighting conditions. Vis Res 46(6/7):1145–1154PubMedCrossRefGoogle Scholar
  15. Kimmig HG, Miles FA, Schwarz U (1992) Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys. J Neurophysiol 68(6):2147–2164PubMedGoogle Scholar
  16. Mack A, Herman E (1972) A new illusion: the underestimation of distance during pursuit eye movements. Percept Psychophys 12(6):471–473Google Scholar
  17. Mita T, Hironaka K, Koike I (1959) The influence of retinal adaptation and location on the “Empfindungszeit”. Tohoku J Exp Med 52(3/4):397–405Google Scholar
  18. Mitrani L, Dimitrov G (1978) Pursuit eye movements of a disappearing moving target. Vis Res 18(5):537–539PubMedCrossRefGoogle Scholar
  19. Mitrani L, Dimitrov G (1982) Retinal location and visual localization during pursuit eye movement. Vis Res 22(8):1047–1051PubMedCrossRefGoogle Scholar
  20. Mitrani L, Dimitrov G, Yakimoff N, Mateeff S (1979) Oculomotor and perceptual localization during smooth eye movements. Vis Res 19(5):609–612PubMedCrossRefGoogle Scholar
  21. Mohrmann-Lendla H, Fleischer AG (1991) The effect of a moving background on aimed hand movements. Ergonomics 34(3):353–364PubMedCrossRefGoogle Scholar
  22. Neggers SF, Bekkering H (2000) Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 83(2):639–651PubMedGoogle Scholar
  23. Noguchi Y, Shimojo S, Kakigi R, Hoshiyama M (2007) Spatial contexts can inhibit a mislocalization of visual stimuli during smooth pursuit. J Vis 7(13):1–15PubMedCrossRefGoogle Scholar
  24. Ramachandran VS, Anstis SM (1990) Illusory displacement of equiluminous kinetic edges. Perception 19(5):611–616PubMedCrossRefGoogle Scholar
  25. Rotman G, Brenner E, Smeets JBJ (2004) Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash. J Vis 4(7):564–574PubMedCrossRefGoogle Scholar
  26. Rotman G, Brenner E, Smeets JBJ (2005) Flashes are localised as if they were moving with the eyes. Vis Res 45(3):355–364PubMedCrossRefGoogle Scholar
  27. Saijo N, Murakami I, Nishida Sy, Gomi H (2005) Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25(20):4941–4951PubMedCrossRefGoogle Scholar
  28. Schlag J, Schlag-Rey M (2002) Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3(3):191–215PubMedCrossRefGoogle Scholar
  29. Tsui SY, Khuu SK, Hayes A (2007) The perceived position shift of a pattern that contains internal motion is accompanied by a change in the pattern’s apparent size and shape. Vis Res 47(3):402–410PubMedCrossRefGoogle Scholar
  30. van Beers RJ, Wolpert DM, Haggard P (2001) Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements. J Neurophysiol 85(5):1914–1922PubMedGoogle Scholar
  31. Whitney D, Goodale MA (2005) Visual motion due to eye movements helps guide the hand. Exp Brain Res 162(3):394–400PubMedCrossRefGoogle Scholar
  32. Whitney D, Westwood DA, Goodale MA (2003) The influence of visual motion on fast reaching movements to a stationary object. Nature 423(6942):869–873PubMedCrossRefGoogle Scholar
  33. Yamagishi N, Anderson SJ, Ashida H (2001) Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond Ser B Biol Sci 268(1470):973–977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Dirk Kerzel
    • 1
    Email author
  • Angélique Gauch
    • 1
  • Blandine Ulmann
    • 1
  1. 1.Faculté de Psychologie et des Sciences de l’ÉducationUniversité de GenèveGenevaSwitzerland

Personalised recommendations