Experimental Brain Research

, Volume 189, Issue 2, pp 243–248 | Cite as

Galvanic vestibular stimulation speeds visual memory recall

  • David Wilkinson
  • Sophie Nicholls
  • Charlotte Pattenden
  • Patrick Kilduff
  • William Milberg
Research Note


The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.


Vision Memory Sensory stimulation 



We thank Jason Barton for providing the questions for the memory task, and Profs. Andrew Derrington and Howard Bowman for helpful comments on an earlier manuscript.


  1. Bächtold D, Baumann T, Sándor P, Kritos M, Brugger P (2001) Spatial- and verbal-memory improvement by cold-water caloric stimulation in healthy subjects. Exp Brain Res 136:128–132PubMedCrossRefGoogle Scholar
  2. Balter S, Stokroos R, Eterman R, Paredis S, Orbons J, Kingman H (2004) Habituation to galvanic vestibular stimulation. Acta Otolaryngol 124:1–5Google Scholar
  3. Barton J, Cherkesova M (2003) Face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology 61:220–225PubMedGoogle Scholar
  4. Bense S, Thomas S, Yousry T, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899PubMedGoogle Scholar
  5. Brandt T, Dieterich M (1999) The vestibular cortex: its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312PubMedCrossRefGoogle Scholar
  6. Brandt T, Schautzer F, Hamilton D, Brüning R, Markowitsch H, Kalla R, Darlington C, Smith P, Strupp M (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128:2732–2741PubMedCrossRefGoogle Scholar
  7. Briggs G, Nebes R (1975) Patterns of hand preference in a student population. Cortex 11:230–238PubMedGoogle Scholar
  8. Broadbent N, Squire L, Clark R (2004) Spatial memory, recognition memory and the hippocampus. Proc Natl Acad Sci 101:14515–14520PubMedCrossRefGoogle Scholar
  9. Coats A (1972) The sinusoidal galvanic body-sway response. Acta Otolaryngol 74:155–162PubMedCrossRefGoogle Scholar
  10. Collins J, Imhoff T, Grigg P (1997) Noise-mediated enhancements and decrements in human tactile sensation. Phys Rev E 6:923–926CrossRefGoogle Scholar
  11. Collins J, Priplata A, Gravelle D, Niemi J, Harry J, Lipsitz L (2003) Noise-enhanced human sensorimotor function. IEEE Eng Med Biol Med 22:76–83CrossRefGoogle Scholar
  12. Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007PubMedCrossRefGoogle Scholar
  13. Fink G, Marshall J, Weiss P, Stephan T, Grefkes C, Shah N, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. NeuroImage 20:1505–1517PubMedCrossRefGoogle Scholar
  14. Fitzpatrick R, Day B (2004) Probing the human vestibular system with galvanic vestibular stimulation. J Appl Physiol 96:2301–2316PubMedCrossRefGoogle Scholar
  15. Grimm R, Hemenway W, Lebray P, Black F (1989) The perilymph fistula syndrome defined in mild head trauma. Acta Otolaryngol 464:1–40Google Scholar
  16. Hanes DA, McCollum G (2006) Cognitive–vestibular interactions: a review of patient difficulties and possible mechanisms. J Vestib Res 16:75–91PubMedGoogle Scholar
  17. Laeng B, Rouw R (2001) Canonical views of faces and the cerebral hemispheres. Laterality 6(3):193–224Google Scholar
  18. Lenggenhager B, Lopez C, Blanke O (2007) Influence of galvanic vestibular stimulation on egocentric and object based mental transformations. Exp Brain Res 184:211–221PubMedCrossRefGoogle Scholar
  19. Magnusson M, Pyykkö I, Jäntti V (1985) Effect of alertness and visual attention on optokinetic nystagmus in humans. Am J Otolaryngol 6:419–425PubMedCrossRefGoogle Scholar
  20. Moss F, Ward L, Sannita W (2004) Stochastic resonance and sensory information processing: a tutorial and review of applications. Clin Neurophysiol 115:267–281PubMedCrossRefGoogle Scholar
  21. Miller SM, Ngo TT (2007) Studies of caloric vestibular stimulation: implication for the cognitive neurosciences, the clinical neurosciences and neurophilosophy. Acta Neuropsychol 19:183–203CrossRefGoogle Scholar
  22. Nicolis C (1982) Stochastic aspects of climatic transitions: response to a periodic forcing. Tellus 34:1–9CrossRefGoogle Scholar
  23. Piana M, Canfora M, Riani M (2000) Role of noise in image processing by the human perceptive system. Phys Rev E 62:1104–1109CrossRefGoogle Scholar
  24. Rakover S (2002) Featural vs. configurational information in faces: a conceptual and empirical analysis. Br J Psychol 93:1–30PubMedCrossRefGoogle Scholar
  25. Riani M, Simonotto E (1994) Stochastic resonance in the perceptual interpretation of ambiguous figures: a neural network model. Phys Rev Lett 72:3120–3123PubMedCrossRefGoogle Scholar
  26. Rossion B, Schiltz C, Crommelinck M (2003) The functionally defined right occipital and fusiform “face areas” discriminate novel from visually familiar faces. Neuroimage 19:877–883PubMedCrossRefGoogle Scholar
  27. Rorsman I, Magnusson M, Johansson B (1999) Reduction of visuo-spatial neglect with vestibular galvanic stimulation. Scand J Rehabil Med 31:117–124PubMedCrossRefGoogle Scholar
  28. Saj A, Honore J, Rousseaux M (2006) Perception of the vertical in patients with right hemispheric lesion: effect of galvanic vestibular stimulation. Neuropsychologia 44:1509–1512PubMedCrossRefGoogle Scholar
  29. Tian J, Cane B, Demer J (2000) Vestibular catch-up saccades in labyrinthine deficiency. Exp Brain Res 131:448–457PubMedCrossRefGoogle Scholar
  30. Vallar G, Papagno C, Rusconi M, Bisiach E (1995) Vestibular stimulation, spatial hemineglect and dysphasia, selective effects. Cortex 31:589–593PubMedGoogle Scholar
  31. Wada Y, Yamamoto T (2001) Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region. J Neurol Neurosurg Psychiatry 71:254–257PubMedCrossRefGoogle Scholar
  32. Watt D (1997) Pointing at memorized targets during prolonged microgravity. Aviat Space Environ Med 68:99–103PubMedGoogle Scholar
  33. Wilkinson D, Donnelly N (1999) The role of stimulus factors in making categorical and coordinate spatial judgments. Brain Cogn 39:171–185PubMedCrossRefGoogle Scholar
  34. Wilkinson D, Ko P, Kilduff, McGlinchey R, Milberg W (2005) Improvement of a face perception deficit via subsensory galvanic vestibular stimulation. J Int Neuropsychol Soc 11:925–929Google Scholar
  35. Yamamoto Y, Struzik Z, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol 58:175–181PubMedCrossRefGoogle Scholar
  36. Zeng F, Fu Q, Morse R (2000) Human hearing enhanced by noise. Brain Res 869:251–255PubMedCrossRefGoogle Scholar
  37. Zheng Y, Darlington C, Smith P (2004) Bilaterlal labyrinthectomy causes longterm deficit in object recognition in rat. NeuroReport 15:1913–1916PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • David Wilkinson
    • 1
  • Sophie Nicholls
    • 1
  • Charlotte Pattenden
    • 1
  • Patrick Kilduff
    • 2
  • William Milberg
    • 2
    • 3
  1. 1.Department of PsychologyUniversity of KentCanterbury, KentUK
  2. 2.New England GRECC, VA Boston Healthcare SystemBostonUSA
  3. 3.Department of PsychiatryHarvard Medical SchoolBostonUSA

Personalised recommendations