Adaptation changes the spatial frequency tuning of adult cat visual cortex neurons

  • M. Bouchard
  • P.-C. Gillet
  • S. Shumikhina
  • S. Molotchnikoff
Research Article


The modular layout of striate cortex is arguably a hallmark of all cortical organization. Neurons of a given module or domain respond optimally to very few specific properties, such as orientation or direction. However, it is possible, under appropriate conditions, to compel a neuron to respond preferentially to a different optimal property. In anesthetized cats, prepared for electrophysiological recordings in the visual cortex, we applied a spatial frequency (SF) that differs (by 0.25–3.0 octaves) from the optimal one for 7–13 min without interruption. This application shifted the tuning curve of the cell mainly in the direction of the imposed SF. Indeed, results indicate an attractive push occurring more frequently (50%) than a repulsive (30%) shift in cortical cells. The increase of responsivity is band-limited and is around the imposed SF, while flanked responses remained unmodified in all conditions. We hypothesize that the observed reversible plasticity is obtained by a modulation of the balance between the strengths of the respective synaptic inputs. These changes in preferred original optimal spatial frequencies may allow a dynamic reaction of cortex to a new environment and particularly to ‘‘zoom’’ cellular activity toward persistent stimuli in spite of the tuning inherited from genetic programming of response properties and environmental conditions during critical periods in new born animals.


Visual cortex Short term plasticity Spatial frequency tuning Vision 



The authors thank Drs. M. Anctil and S. Itaya for insightful comments. The research is supported by NSERC Canada.


  1. Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B (2006) ‘‘Simplification’’ of responses of complex cells in cat striate cortex: suppressive surrounds and feedback inactivation. J Physiol (Lond) 574:731–750CrossRefGoogle Scholar
  2. Barlow HB, Földiák P (1989) Adaptation and decorrelation in the cortex. In: Durbin R, Miali C, Mitchinson G (eds) The computing neuron. Addison-Wesley, New York, pp 54–72Google Scholar
  3. Basole A, White LE, Fitzpatrick D (2003) Mapping multiple features in the population response of visual cortex. Nature 423:986–990PubMedCrossRefGoogle Scholar
  4. Blakemore C, Nachmias J, Sutton P (1970) The perceived spatial frequency shift: evidence for frequency selective neurones in the human brain. J Physiol (Lond) 210:727–750Google Scholar
  5. Carandini M, Ferster DA (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276:949–952PubMedCrossRefGoogle Scholar
  6. Chander D, Chichilnisky EJ (2001) Adaptation to temporal contrast in primate and salamander retina. J Neurosci 15:9904–9916Google Scholar
  7. Clifford CW (2002) Perceptual adaptation: motion parallels orientation. Trends Cogn Sci 6:136–143PubMedCrossRefGoogle Scholar
  8. Das A (2005) Cortical maps: where theory meets experiments. Neuron 47:168–171PubMedCrossRefGoogle Scholar
  9. De Valois RL, De Valois KK (1990) Multiple spatial frequency channels. In: Broadbent DE, McGaugh JL, Mackintosh NJ, Posner MI, Tulving E, Weiskrantz L (eds) Spatial vision. Oxford Psychology Series. Oxford University Press, Clarendon Press, New York, Oxford, pp 176–211Google Scholar
  10. Dragoi V, Rivadulla C, Sur M (2001) Foci of orientation plasticity tuning in visual cortex. Nature 411:80–86PubMedCrossRefGoogle Scholar
  11. Dragoi V, Sharma J, Miller EK, Sur M (2002) Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat Neurosci 5:883–891PubMedCrossRefGoogle Scholar
  12. Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298PubMedCrossRefGoogle Scholar
  13. Everson RM, Prashanth AK, Gabbay M, Knight BW, Sirovich L, Kaplan E (1998) Representation of spatial frequency and orientation in the visual cortex. Proc Natl Acad Sci USA 95:8334–8338PubMedCrossRefGoogle Scholar
  14. Ghisovan N, Nemri A, Shumikhina S, Molotchnikoff S (2007a) Neuronal plasticity in cat primary visual cortex: a neuronal correlate of memory. Perception 36:S33CrossRefGoogle Scholar
  15. Ghisovan N, Nemri A, Shumikhina S, Molotchnikoff S (2007b) Cortical cells in area 17 “remember” the adapting orientation applied previously. Society for Neuroscience, Neuroscience Abstracts 920:21Google Scholar
  16. Godde B, Leonhardt R, Cords SM, Dinse HR (2002) Plasticity of orientation preference maps in the visual cortex of adult cats. Proc Natl Acad Sci USA 99:6352–6357PubMedCrossRefGoogle Scholar
  17. Godde B, Stauffenberg B, Spengler F, Dinse HR (2000) Tactile coactivation-induced changes in spatial discrimination performance. J Neurosci 20:1597–1604PubMedGoogle Scholar
  18. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154Google Scholar
  19. Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20:8504–8514PubMedGoogle Scholar
  20. Kohn A, Movshon JA (2003) Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39:681–691PubMedCrossRefGoogle Scholar
  21. Kohn A, Movshon JA (2004) Adaptation changes the direction tuning of macaque MT neurons. Nat Neurosci 7:764–772PubMedCrossRefGoogle Scholar
  22. Kohn A (2007) Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol 97:3155–3164PubMedCrossRefGoogle Scholar
  23. Krekelberg B, van Wezel RJA, Albright TD (2006) Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol 95:255–270PubMedCrossRefGoogle Scholar
  24. Levinson E, Sekuler R (1976) Adaptation alters perceived direction of motion. Vis Res 16:779–781PubMedCrossRefGoogle Scholar
  25. Maunsell JH, Van Essen DC (1983) Functional properties of neurons in the middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed and orientation. J Neurophysiol 49:1127–1147PubMedGoogle Scholar
  26. Milleret C, Buisseret P, Gary-Bobo E (1988) Area centralis position relative to the optic disc projection in kittens as a function of age. Invest Ophthalmol Vis Sci 29:1299–1305PubMedGoogle Scholar
  27. Molotchnikoff S, Gillet P-C, Shumikhina S, Bouchard M (2007) Spatial frequency characteristics of nearbyneurons in cat’s visual cortex. Neurosci Lett 418:242–247PubMedCrossRefGoogle Scholar
  28. Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 278:850–852PubMedCrossRefGoogle Scholar
  29. Movshon J, Thompson I, Tolhurst D (1978) Receptive field organization of complex cells in the cat’s striate cortex. J Physiol (Lond) 283:79–99Google Scholar
  30. Reinoso-Suarez F (1961) Topographischer Hirnatlas der Katze, Herausgegeben von E. Merck A.G., DarmstadtGoogle Scholar
  31. Saul AB, Cynader MS (1989a) Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain. Vis Neurosci 2:593–607PubMedGoogle Scholar
  32. Saul AB, Cynader MS (1989b) Adaptation in single units in visual cortex: the tuning of aftereffects in the temporal domain. Vis Neurosci 2:609–620PubMedCrossRefGoogle Scholar
  33. Shou T, Li X, Zhou Y, Hu B (1996) Adaptation of visual evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings. Vis Neurosci 13:605–613PubMedGoogle Scholar
  34. Sirovich L, Uglesich R (2004) The organization of orientation and spatial frequency in primary visual cortex. Proc Natl Acad Sci USA 101:16941–16946PubMedCrossRefGoogle Scholar
  35. Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M (1997) Adaptation of retinal processing to image contrast and spatial scale. Nature 386:69–73PubMedCrossRefGoogle Scholar
  36. Solomon SG, Peirce JW, Dhruv NT, Lennie P (2004) Profound contrast adaptation early in the visual pathway. Neuron 42:155–162PubMedCrossRefGoogle Scholar
  37. Sur M, Schummers J, Dragoi V (2002) Cortical plasticity: time for a change. Curr Biol 12:R168–R170PubMedCrossRefGoogle Scholar
  38. Schuett S, Bonhoeffer T, Hübener M (2001) Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32:325–337PubMedCrossRefGoogle Scholar
  39. Teich AF, Qian N (2003) Learning and adaptation in a recurrent model of V1 orientation selectivity. J Neurophysiol 89:2086–2100PubMedCrossRefGoogle Scholar
  40. Tolias AS, Keliris GA, Smirnakis SM, Logothetis NK (2005) Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli. Nat Neurosci 8:591–593PubMedCrossRefGoogle Scholar
  41. Vakkur GJ (1963) Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vis Res 61:289–314PubMedCrossRefGoogle Scholar
  42. Wainwright MJ (1999) Visual adaptation as optimal information transmission. Vis Res 39:3960–3974PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Bouchard
    • 1
  • P.-C. Gillet
    • 1
  • S. Shumikhina
    • 1
  • S. Molotchnikoff
    • 1
  1. 1.Département de Sciences BiologiquesUniversité de MontréalMontréalCanada

Personalised recommendations