Experimental Brain Research

, Volume 188, Issue 1, pp 63–75 | Cite as

Gaze influences finger movement-related and visual-related activation across the human brain

  • Patrick Bédard
  • Arul Thangavel
  • Jerome N. Sanes
Research Article


The brain uses gaze orientation to organize myriad spatial tasks including hand movements. However, the neural correlates of gaze signals and their interaction with brain systems for arm movement control remain unresolved. Many studies have shown that gaze orientation modifies neuronal spike discharge in monkeys and activation in humans related to reaching and finger movements in parietal and frontal areas. To continue earlier studies that addressed interaction of horizontal gaze and hand movements in humans (Baker et al. 1999), we assessed how horizontal and vertical gaze deviations modified finger-related activation, hypothesizing that areas throughout the brain would exhibit movement-related activation that depended on gaze angle. The results indicated finger movement-related activation related to combinations of horizontal, vertical, and diagonal gaze deviations. We extended our prior findings to observation of these gaze-dependent effects in visual cortex, parietal cortex, motor, supplementary motor area, putamen, and cerebellum. Most significantly, we found a modulation bias for increased activation toward rightward, upper-right and vertically upward gaze deviations. Our results indicate that gaze modulation of finger movement-related regions in the human brain is spatially organized and could subserve sensorimotor transformations.


Finger movement Functional MRI Gaze position Human 



This work was funded by the National Institutes of Health (R01-EY01541 to J.N.S.) and the Ittleson Foundation (to J.N.S and John P. Donoghue). Portions of this work represented partial fulfillment of the Senior Honors project for Mr. Thangavel.


  1. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  2. Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3:532–548PubMedGoogle Scholar
  3. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRefGoogle Scholar
  4. Andersson F, Joliot M, Perchey G, Petit L (2007) Eye position-dependent activity in the primary visual area as revealed by fMRI. Hum Brain Mapp 28:673–680PubMedCrossRefGoogle Scholar
  5. Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542–548PubMedCrossRefGoogle Scholar
  6. Baker JT, Donoghue JP, Sanes JN (1999) Gaze direction modulates finger movement activation patterns in human cerebral cortex. J Neurosci 19:10044–10052PubMedGoogle Scholar
  7. Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260PubMedCrossRefGoogle Scholar
  8. Battaglia-Mayer A, Ferraina S, Mitsuda T, Marconi B, Genovesio A, Onorati P, Lacquaniti F, Caminiti R (2000) Early coding of reaching in the parietooccipital cortex. J Neurophysiol 83:2374–2391PubMedGoogle Scholar
  9. Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022PubMedCrossRefGoogle Scholar
  10. Binsted G, Heath M (2005) No evidence of a lower visual field specialization for visuomotor control. Exp Brain Res 162:89–94PubMedCrossRefGoogle Scholar
  11. Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64:476–482PubMedCrossRefGoogle Scholar
  12. Boussaoud D, Bremmer F (1999) Gaze effects in the cerebral cortex: reference frames for space coding and action. Exp Brain Res 128:170–180PubMedCrossRefGoogle Scholar
  13. Boussaoud D, Jouffrais C, Bremmer F (1998) Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. J Neurophysiol 80:1132–1150PubMedGoogle Scholar
  14. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436PubMedCrossRefGoogle Scholar
  15. Bremmer F, Pouget A, Hoffmann KP (1998) Eye position encoding in the macaque posterior parietal cortex. Eur J Neurosci 10:153–160PubMedCrossRefGoogle Scholar
  16. Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606PubMedCrossRefGoogle Scholar
  17. Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636PubMedCrossRefGoogle Scholar
  18. Cisek P, Kalaska JF (2002) Modest gaze-related discharge modulation in monkey dorsal premotor cortex during a reaching task performed with free fixation. J Neurophysiol 88:1064–1072PubMedCrossRefGoogle Scholar
  19. Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage 6:93–103PubMedCrossRefGoogle Scholar
  20. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173PubMedCrossRefGoogle Scholar
  21. Cox RW, Hyde JS (1997) Software tools for analysis and visualization of fMRI data. NMR Biomed 10:171–178PubMedCrossRefGoogle Scholar
  22. Danckert J, Goodale MA (2001) Superior performance for visually guided pointing in the lower visual field. Exp Brain Res 137:303–308PubMedCrossRefGoogle Scholar
  23. Davare M, Duque J, Vandermeeren Y, Thonnard JL, Olivier E (2007) Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment. Cereb Cortex 17:353–362PubMedCrossRefGoogle Scholar
  24. Desmurget M, Pelisson D, Rossetti Y, Prablanc C (1998) From eye to hand: planning goal-directed movements. Neurosci Biobehav Rev 22:761–788PubMedCrossRefGoogle Scholar
  25. Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2928PubMedGoogle Scholar
  26. DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840PubMedGoogle Scholar
  27. DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12:991–997PubMedCrossRefGoogle Scholar
  28. Deutschländer A, Marx E, Stephan T, Riedel E, Wiesmann M, Dieterich M, Brandt T (2005) Asymmetric modulation of human visual cortex activity during 10 degrees lateral gaze (fMRI study). Neuroimage 28:4–13PubMedCrossRefGoogle Scholar
  29. Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis 3:586–598PubMedCrossRefGoogle Scholar
  30. Duvernoy HM (1991) The human brain: surface three dimensional sectional anatomy and MRI. Springer, New YorkGoogle Scholar
  31. Enright JT (1995) The non-visual impact of eye orientation on eye-hand coordination. Vision Res 35:1611–1618PubMedCrossRefGoogle Scholar
  32. Galletti C, Fattori P, Kutz DF, Gamberini M (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11:575–582PubMedCrossRefGoogle Scholar
  33. Glickstein M (2003) Subcortical projections of the parietal lobes. Adv Neurol 93:43–55PubMedGoogle Scholar
  34. Gorbet DJ, Staines WR, Sergio LE (2004) Brain mechanisms for preparing increasingly complex sensory to motor transformations. Neuroimage 23:1100–1111PubMedCrossRefGoogle Scholar
  35. Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594PubMedGoogle Scholar
  36. Hollands MA, Patla AE, Vickers JN (2002) “Look where you’re going!”: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143:221–230PubMedCrossRefGoogle Scholar
  37. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493PubMedCrossRefGoogle Scholar
  38. Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156PubMedCrossRefGoogle Scholar
  39. Jouffrais C, Boussaoud D (1999) Neuronal activity related to eye-hand coordination in the primate premotor cortex. Exp Brain Res 128:205–209PubMedCrossRefGoogle Scholar
  40. Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements—a PET study. Eur J Neurosci 10:2254–2260PubMedCrossRefGoogle Scholar
  41. Kertzman C, Schwarz U, Zeffiro TA, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183PubMedCrossRefGoogle Scholar
  42. Khan MA, Lawrence GP (2005) Differences in visuomotor control between the upper and lower visual fields. Exp Brain Res 164:395–398PubMedCrossRefGoogle Scholar
  43. Kim JA, Eliassen JC, Sanes JN (2005) Movement quantity and frequency coding in human motor areas. J Neurophysiol 94:2504–2511PubMedCrossRefGoogle Scholar
  44. Krauzlis RJ (2005) The control of voluntary eye movements: new perspectives. Neuroscientist 11:124–137PubMedCrossRefGoogle Scholar
  45. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRefGoogle Scholar
  46. Lewald J (1997) Eye-position effects in directional hearing. Behav Brain Res 87:35–48PubMedCrossRefGoogle Scholar
  47. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). Neuroimage 2:89–101PubMedCrossRefGoogle Scholar
  48. McIntyre J, Stratta F, Lacquaniti F (1997) Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space. J Neurophysiol 78:1601–1618PubMedGoogle Scholar
  49. Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:6209–6214PubMedGoogle Scholar
  50. Miall RC, Reckess GZ (2002) The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn 48:212–226PubMedCrossRefGoogle Scholar
  51. Middleton FA, Strick PL (1998) The cerebellum: an overview. Trends Neurosci 21:367–369PubMedCrossRefGoogle Scholar
  52. Mushiake H, Tanatsugu Y, Tanji J (1997) Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J Neurophysiol 78:567–571PubMedGoogle Scholar
  53. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955PubMedCrossRefGoogle Scholar
  54. Pelli DG (1997) The Video toolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442PubMedCrossRefGoogle Scholar
  55. Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111:643–674PubMedCrossRefGoogle Scholar
  56. Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci 24:981–1004PubMedCrossRefGoogle Scholar
  57. Rosenbluth D, Allman JM (2002) The effect of gaze angle and fixation distance on the responses of neurons in V1, V2, and V4. Neuron 33:143–149PubMedCrossRefGoogle Scholar
  58. Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–440PubMedCrossRefGoogle Scholar
  59. Salinas E, Thier P (2000) Gain modulation: a major computational principle of the central nervous system. Neuron 27:15–21PubMedCrossRefGoogle Scholar
  60. Sato N, Nakamura K (2003) Visual response properties of neurons in the parahippocampal cortex of monkeys. J Neurophysiol 90:876–886PubMedCrossRefGoogle Scholar
  61. Schaefer SY, Haaland KY, Sainburg RL (2007) Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain 130:2146–2158PubMedCrossRefGoogle Scholar
  62. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260PubMedCrossRefGoogle Scholar
  63. Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons. Nature 398:239–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Patrick Bédard
    • 1
  • Arul Thangavel
    • 1
  • Jerome N. Sanes
    • 1
  1. 1.Department of NeuroscienceAlpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations