Advertisement

Experimental Brain Research

, Volume 186, Issue 2, pp 305–314 | Cite as

Influence of pathologic and simulated visual dysfunctions on the postural system

  • Michaela Friedrich
  • Hans-Juergen Grein
  • Carola Wicher
  • Juliane Schuetze
  • Anja Mueller
  • Andreas Lauenroth
  • Kuno Hottenrott
  • Rene Schwesig
Research Article

Abstract

Visual control has an influence on postural stability. Whilst vestibular, somatosensoric and cerebellar changes have already been frequency analytically parameterised with posturography, sufficient data regarding the visual system are still missing. The aim of this study was to evaluate the influence of pathologic and simulated visual dysfunctions on the postural system by calculating the frequency analytic representation of the visual system throughout the frequency range F1 (0.03–0.1 Hz) of Fourier analysis. The study was divided into two parts. In the first part, visually handicapped subjects and subjects with normal vision were investigated with posturography regarding postural stability (stability effect, Fourier spectrum of postural sway, etc.) with open and closed eyes. The visually impaired and the normal group differed significantly in the frequency range F1 (p = 0.002). Significant differences of the postural stability between both groups were found only in the test position with open eyes (NO). The healthy group showed a significant loss of stability, whereas the impaired group showed an increased stability due to sufficient somatosensoric processes. Visually handicapped persons can compensate the visual information deficit through improved peripheral–vestibular and somatosensoric perception and cerebellar processing. In the second part, subjects with normal vision were examined under simulated visual conditions, e.g., hyperopia (3.0 D), reduced visual acuity (VA = 20/200), yoke prisms (4 cm/m) and pursuits (pendulum). Changes in postural parameters due to simulations have been compared to a standard situation (open eyes [NO], fixation distance 3 m). Visual simulations showed influence on frequency range F1. Compared to the standard situation, significant differences have been found in reduced visual acuity, pursuits and yoke prisms. A loss of stability was measured for simulated hyperopia, pendulum and yoke prisms base down. Stability regulation can be understood as a multi-sensoric process by the visual, vestibular, somatosensoric and cerebellar system. Reduced influence of a single subsystem is compensated by the other subsystems. Obviously the main part of reduced visual input is compensated by the vestibular system. Moreover, the body sway, represented by the stability indicator, increased in this situation.

Keywords

Postural stability Frequency analysis Visual control Posturography 

References

  1. Abdelhafiz AH, Austin CA (2003) Vision factors should be assessed in older people presenting with falls or hip fracture. Age Ageing 32:26–30PubMedCrossRefGoogle Scholar
  2. Allison LK, Kiemel T, Jeka JJ (2006) Multisensory reweighting of vision and touch is intact in healthy and fall-prone older adults. Exp Brain Res 175:342–352PubMedCrossRefGoogle Scholar
  3. Anand V, Buckley JG, Scally A, Elliot DB (2003) Postural stability changes in the elderly with cataract simulation and refractive blur. Invest Ophthalmol Vis Sci 44:4670–675PubMedCrossRefGoogle Scholar
  4. Asseman F, Caron O, Cremieux J (2005) Effects of the removal of vision on body sway during different postures in elite gymnasts. Int J Sports Med 26(2):116–119PubMedCrossRefGoogle Scholar
  5. Assman F, Gahery Y (2005) Effect of head position and visual condition on balance control in inverted stance. Neurosci Lett 375(2):134–137CrossRefGoogle Scholar
  6. Berencsi A, Ishihara M, Imanaka K (2005) The functional role of central and peripheral vision in the control to posture. Hum Mov Sci 24(5–6):689–709PubMedCrossRefGoogle Scholar
  7. Black O, Wall C, Rockette H, Kitch R (1982) Normal subject postural sway during the Romberg test. Am J Otolaryngol 3:309–318PubMedCrossRefGoogle Scholar
  8. Bobrova EV, Kucher VI, Levik IUS, Bogacheva IN (2007) Nonlinear analysis of the dynamics of the human balance control system during fixation and smooth pursuits of visual target. Biofizika 52(2):355–361PubMedGoogle Scholar
  9. Bronstein AM, Buckwell D (1997) Automatic control of postural sway by visual motion parallax. Exp Brain Res 113(2):243–248PubMedCrossRefGoogle Scholar
  10. Brannan S, Dewar C, Sen J, Clarke D, Marshall T, Murray PI (2003) A prospective study of the rate of falls before and after cataract surgery. Br J Ophthalmol 87:560–562PubMedCrossRefGoogle Scholar
  11. Brooke-Wavell K, Perrett LK, Howarth PA, Haslam RA (2002) Influence of the visual environment on the postural stability in healthy older woman. Gerontology 48:293–297PubMedCrossRefGoogle Scholar
  12. Deshpande N, Patla AE (2007) Visual–vestibular interaction during goal directed locomotion: effects of aging and blurring vision. Exp Brain Res 176(1):43–53PubMedCrossRefGoogle Scholar
  13. De Witt G (1972) Optic versus vestibular and proprioceptive impulses, measured by posturometry. Agressologie 13(Suppl B):75–79Google Scholar
  14. Diener HC, Dichgans J, Bacher M, Gompf B (1984) Quantification of postural sway in normals and patients with cerebellar disease. EEG Clin Neurophysiol 57:134–142CrossRefGoogle Scholar
  15. Elliott DB, Patla AE, Flanagan GJ, Spaulding S, Rietdyk S, Strong G, Brown S (1995) The Waterloo vision and mobility study: postural control strategies in subjects with ARM. Ophthalmic Physiol Opt 15:553–559PubMedCrossRefGoogle Scholar
  16. Eto M (2005) The relationship between visual perception and postural control in falls of the elderly living in local communities. Nippon Ronen Igakkai Zasshi 42(1):106–111PubMedGoogle Scholar
  17. Ferdjallah M, Harris GF, Wertsch JJ (1997) Instantaneous spectral characteristics of postural stability, using time-frequency analysis. Proceedings of the 19th annual conference of the IEEE engineering in medicine and biology 19:1675–1678CrossRefGoogle Scholar
  18. Fushiki H, Kobayashi K, Asai M, Watanabe Y (2005) Influence of visual induced self-motion on postural stability. Acta Otolaryngol 125(1):60–64PubMedCrossRefGoogle Scholar
  19. Gagey PM, Toupet M (1998) L´amplitude des oscillations posturales dans la bande de frequence 0.2 Hertz. Etude chez le sujet normal. Publications de l´Institut de Posturologie ParisGoogle Scholar
  20. Gautier G, Thouvarecq R, Chollet D (2007) Visual and postural control of an arbitrary posture: the handstand. J Sports Sci 25(11):1271–1278PubMedCrossRefGoogle Scholar
  21. Glasauer S, Schneider E, Jahn K, Strupp M, Brandt T (2005) How the eyes move the body. Neurology 65(8):1291–1293PubMedCrossRefGoogle Scholar
  22. Goldstein E Bruce (2002) Wahrnehmungsphysiologie. Spektrum Akademischer, HeidelbergGoogle Scholar
  23. Guerraz M, Sakellari V, Bronstein AM (2000) Influence of motion parallax in the control of spontaneous body sway. Exp Brain Res 131:244–252PubMedCrossRefGoogle Scholar
  24. Hafstrom A, Fransson PA, Karlberg M, Ledin T, Magnusson M (2002) Visual influence on postural control, with and without visual motion feedback. Acta Otolaryngol 122:392–397PubMedCrossRefGoogle Scholar
  25. Horak FB (2006) Postural orientation and equilibrium: what de we need to know about neuralcontrol of balance to prevent falls? Age Ageing Suppl 2:7–11Google Scholar
  26. Ivers RQ, Cumming RG, Mitchell P, Attebo K (1998) Visual impairment and falls in older adults: the Blue Mountains eye study. J Am Geriatr Soc 46:58–64PubMedGoogle Scholar
  27. Jeka J, Allison L, Saffer M, Zhang Y, Carver S, Kiemel T (2006) Sensory reweight with translational visual stimuli in young and elderly adults: the role of state-dependent noise. Exp Brain Res 174(3):517–527PubMedCrossRefGoogle Scholar
  28. Jendrusch G, Brach M Sinnesleistungen im sport. In: Mechling H, Munzert J (Hrsg.) (2003) Handbuch Bewegungswissenschaft-Bewegungslehre. Verlag Karl Hofmann, Schondorf 175–196Google Scholar
  29. Jennings JAM (2006) Funktionaloptometrie: ein kritischer Überblick, Teil 1 und 2. DOZ, Heidelberg, 07/08Google Scholar
  30. Kahle W (2002) Atlas der Anatomie, band 3 nervensystem und Sinnesorgane. Deutscher Taschenbuch, MünchenGoogle Scholar
  31. Kaplan M, Carmody D (1997) Extent of use of prisms by optometric practitioners. J Opt Vis Dev 86–90Google Scholar
  32. Kapoor N, Ciuffreda KJ (2002) Vision disturbances following traumatic brain injury. Curr Treat Options Neurol 4(4):271–280PubMedCrossRefGoogle Scholar
  33. Kapteyn TS, de Wit G (1972) Posturography as an auxiliary in vestibular investigation. Acta Otolaryngol 73:104–111PubMedCrossRefGoogle Scholar
  34. Kapteyn TS, Bles W, Njiokiktjien CJ, Kodde L, Massen CH, Mol M (1983) Standardization in platform stabilometry being a part of posturography. Agressologie 24:321–326PubMedGoogle Scholar
  35. Kawakita T, Kuno S, Miyake Y, Watanabe S (2000) Body sway induced dy depth linear viction in reference to central and peripheral visual field. Jpn J Physiol 50(3):315–321PubMedCrossRefGoogle Scholar
  36. Klinke R, Silbernagel S (1994) Lehrbuch der Physiologie. Georg Thieme, StuttgartGoogle Scholar
  37. Kohen-Raz R (1991) Application of tetra-ataxiametric posturography in clinical and developmental diagnosis. Percept Mot Skills 73:635–656PubMedCrossRefGoogle Scholar
  38. Kollmitzer J, Ebenbichler GR, Sabo A, Kerschan K, Bochdansky T (2000) Effects of back extensor training versus balance training on postural control. Med Sci Sports Exerc 32:1770–1776PubMedCrossRefGoogle Scholar
  39. Kuno S, Kawakita T, Kawakami O, Miyake Y, Watanabe (1999) Postural adjustment response to deth direction moving patterns produced by virtual reality graphics. Jpn J Physiol 49(5):417–424PubMedCrossRefGoogle Scholar
  40. Laughlin PJ, Redfern MS (2001) Spectral analysis of visually induced postural sway in healthy elderly and young subjects. IEEE Trans Rehab Eng 9:24–30CrossRefGoogle Scholar
  41. Liebermann DG, Katz L, Hughes MD, Bartlett RM, McClements J, Franks IM (2002) Advances in the application of information technology to sport performance. J Sports Sci 20(10):755–769PubMedCrossRefGoogle Scholar
  42. Liu B, Kong W, Zou Y (2007) The sensory organization in the posture stability with interruption induced by standing foam in normal subjects. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 21(4):162–165PubMedGoogle Scholar
  43. Lord SR, Menz HB (2000) Visual contributions to postural stability in older adults. Gerontology 46:306–310PubMedCrossRefGoogle Scholar
  44. Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O (1989) Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol 44: M118–M127PubMedGoogle Scholar
  45. Mauritz KH, Dietz V (1980) Characteristics of postural instability by ischemic blocking of leg afferents. Exp Brain Res 38:117–119PubMedCrossRefGoogle Scholar
  46. Mergner T, Schwaigart G, Maurer C, Bluemle A (2005) Human postural response to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167:535–556PubMedCrossRefGoogle Scholar
  47. Mizuno Y, Shindo M, Kuno S, Kawakita T, Watanabe S (2001) Postural control responses sitting on unstable board during visual stimulation. Acta Astronaut 49(3–10):131–136PubMedCrossRefGoogle Scholar
  48. Naoki S, Ikuya, Murakami S, Hiroaki G (2005) Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25(20):4941–4951CrossRefGoogle Scholar
  49. Oppenheim U, Kohen-Raz R, Alex D, Kohen-Raz A, Azarya M (1999) Postural characteristics of diabetic neuropathy. Diabetes Care 22:328–332PubMedCrossRefGoogle Scholar
  50. Padula WV, Argyris S, Ray J (1994) Visual evoked potentials (VEP) evaluating treatment for post-trauma vision syndrome (PTVS) in patients with traumatic brain injuries (TBI). Brain Inj 8(2):125–133PubMedCrossRefGoogle Scholar
  51. Patat A, Le Go A, Foulhoux P (1985) Dose response relationship of vindeburnol based on spectral analysis of posturographic recordings. Eur J Clin Pharmacol 29:455–459PubMedCrossRefGoogle Scholar
  52. Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107:143–1163CrossRefGoogle Scholar
  53. Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118PubMedGoogle Scholar
  54. Poulain I, Giraudet G (2007) Age-related changes of visual contribution in posture control. Gait Posture 16(4)Google Scholar
  55. Previc FH, Mullen TJ (1990–91) A comparison of the latencies of visually induced postural change and self-motion perception. J Vestib Res 1(3):317–323Google Scholar
  56. Ravaioli E, Oie SK, Kiemel T, Chiari L, Jeka J (2005) Nonlinear postural control in response to visual translation. Exp Brain Res 160:450–459PubMedCrossRefGoogle Scholar
  57. Rawstron JA, Burley CD, Elder MJ (2005) A systematic Review of the applicability an effiacy of eye exercises. J Pediatr Ophthalmol Strabismus 42(2):82–88PubMedGoogle Scholar
  58. Rost R (2001) Lehrbuch der Sportmedizin. Deutscher Ärzte Verlag, Köln Sally SL, Gurnsey R (2007) Foveal and exta-foveal orientation discrimination. Exp Brain Res 18 (Epub ahead of print)Google Scholar
  59. Sally SL, Gurnsey R (2007) Foveal and exta-foveal orientation discrimination. Exp Brain Res 183(3):351–360PubMedCrossRefGoogle Scholar
  60. Santangelo V, Spence C (2007) Assessing the effect of verbal working memory load on visu-spatial exogenous orienting. Neurosci Lett 413(2):105–109PubMedCrossRefGoogle Scholar
  61. Schwartz S, Segal O, Barkana Y, Schwesig R, Avni I, Morad Y (2005) The effect of cataract surgery on postural control. Invest Ophthalmol Vis Sci 46:920–924PubMedCrossRefGoogle Scholar
  62. Schwesig R (2006) Das posturale System in der Lebensspanne. Hamburg, Dr. Kovac, 123–199Google Scholar
  63. Shumway-Cook A, Wollacott MH (1985) The growth of stability: postural control from a development perspective. J Mot Behav 17:131–147PubMedGoogle Scholar
  64. Sparto P, Redfern MS, Jasko JG, Casselbrant ML, Mandel EM, Furman JM (2006) The influence of dynamic visual cues for postural control in children aged 7–12 years. Exp Brain Res 168:505–516PubMedCrossRefGoogle Scholar
  65. Strupp M, Glasauer S, Jahn K, Schneider E, Krafczyk S, Brandt T (2003) Eye movements and balance. Ann NY Acad Sci 1004:352–358PubMedCrossRefGoogle Scholar
  66. Stoffregen T (1985) Flow structure versus retinal location in the optical control of stance. J Exp Psychol Hum Percept Perform 11:554–565PubMedCrossRefGoogle Scholar
  67. Stoll W, Most E, Tegenthoff M (2004) Schwindel und Gleichgewichtsstörungen. 4. Aufl. Thieme, StuttgartGoogle Scholar
  68. Taguchi K (1978) Spectral analysis of movement of the center of gravity in vertiginous and ataxic patients. Agressologie 19:69–70PubMedGoogle Scholar
  69. Tanaka H, Nakashizuka M, Uetake T, Itoh T (2000) The effects of visual input on postural control mechanisms. J Hum Ergol 29(1–2):15–22Google Scholar
  70. Turano K, Rubin GS, Herdman SJ, Chee E, Fried LP (1994) Visual stabilization of posture in the elderly: fallers vs. nonfallers. Optom Vis Sci 71:761–769PubMedCrossRefGoogle Scholar
  71. Weissberg E, Lyons SA, Richman JE (2000) Fixation dysfunction with intermittent saccadic intrusions managed by yoked prisms: a case report. Optometry 71(3):183–188PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michaela Friedrich
    • 1
  • Hans-Juergen Grein
    • 1
  • Carola Wicher
    • 1
  • Juliane Schuetze
    • 1
  • Anja Mueller
    • 3
  • Andreas Lauenroth
    • 2
  • Kuno Hottenrott
    • 2
  • Rene Schwesig
    • 2
  1. 1.Course of OptometryUniversity of Applied Sciences JenaJenaGermany
  2. 2.Department of Sports ScienceMartin-Luther-University HalleHalleGermany
  3. 3.Vocational Advancement Service Halle gGmbhVocational Education Center for Blind and Visually Impaired PersonsHalleGermany

Personalised recommendations