Experimental Brain Research

, Volume 186, Issue 1, pp 143–149 | Cite as

Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury

  • Wan-Jie Chia
  • Andrew M. Jenner
  • Akhlaq A. Farooqui
  • Wei-Yi OngEmail author
Research Article


Our previous study showed an increase in total cholesterol level of the hippocampus after kainate-induced injury, but whether this is further metabolized to neurosteroids is not known. The first step in neurosteroid biosynthesis is the conversion of cholesterol to pregnenolone by the enzyme cytochrome P450 side chain cleavage (P450scc). This study was carried out to elucidate the expression of this enzyme in the kainate-lesioned rat hippocampus. A net decrease in P450scc protein was detected in hippocampal homogenates by Western blots at 2 weeks post-kainate injection (time of peak cholesterol concentration after kainate injury). Immunohistochemistry showed decreased labeling of the enzyme in neurons, but increased expression in a small number of astrocytes. The level of pregnenolone was also analyzed using a newly developed gas chromatography–mass spectrometry (GC–MS) method, optimized for the rat hippocampus. A non-significant tendency to a decrease in pregnenolone level was detected 2 weeks post-lesion. This is in contrast to a large increase in oxysterols in the lesioned hippocampus at this time (He et al. 2006). Together, they indicate that increased cholesterol in the kainate lesioned hippocampus is mostly metabolized to oxysterols, and not neurosteroids.


Cytochrome P450 side chain cleavage Pregnenolone Neurosteroids Cholesterol Oxysterols Kainate excitotoxicity Neurodegeneration 



This work was supported by a grant from the National University of Singapore (R181 000 091112).


  1. Bates KA, Harvey AR, Carruthers M, Martins RN (2005) Androgens, andropause and neurodegeneration: exploring the link between steroidogenesis, androgens and Alzheimer’s disease. Cell Mol Life Sci 62:281–292PubMedCrossRefGoogle Scholar
  2. Baulieu EE (1990) Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 52:1–32Google Scholar
  3. Baulieu EE (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23:963–987PubMedCrossRefGoogle Scholar
  4. Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37:395–403PubMedCrossRefGoogle Scholar
  5. Biagini G, Baldelli E, Longo D, Pradelli L, Zini I, Rogawski MA, Avoli M (2006) Endogenous neurosteroids modulate epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol 201:519–524PubMedCrossRefGoogle Scholar
  6. Björkhem I (2002) Do oxysterols control cholesterol homeostasis? J Clin Invest 110:725–730PubMedCrossRefGoogle Scholar
  7. Björkhem I, Heverin M, Leoni V, Meaney S, Diczfalusy U (2006) Oxysterols and Alzheimer’s disease. Acta Neurol Scand Suppl 185:43–49PubMedCrossRefGoogle Scholar
  8. Bologa L, Sharma J, Roberts E (1987) Dehydroepiandrosterone and its sulfated derivative reduce neuronal death and enhance astrocytic differentiation in brain cell cultures. J Neurosci Res 17:225–234PubMedCrossRefGoogle Scholar
  9. Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R, Baulieu EE, Robel P (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res 270:119–125PubMedCrossRefGoogle Scholar
  10. Dubrovsky BO (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29:169–192PubMedCrossRefGoogle Scholar
  11. Ebner MJ, Corol DI, Havlíková H, Honour JW, Fry JP (2006) Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endrocrinology 147:179–190CrossRefGoogle Scholar
  12. Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical Aspects of Excitotoxicity. Springer, New YorkGoogle Scholar
  13. Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699–1705PubMedCrossRefGoogle Scholar
  14. Gursoy E, Cardounel A, Kalimi M (2001) Pregnenolone protects mouse hippocampal (HT-22) cells against glutamate and amyloid beta protein toxicity. Neurochem Res 26:15–21PubMedCrossRefGoogle Scholar
  15. He X, Jenner AM, Ong WY, Farooqui AA, Patel SC (2006) Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J Neuropathol Exp Neurol 65:652–663PubMedCrossRefGoogle Scholar
  16. Jessup W, Brown AJ (2005) Novel routes for metabolism of 7-ketocholesterol. Rejuvenation Res 8:9–12PubMedCrossRefGoogle Scholar
  17. Jung-Testas I, Hu ZY, Baulieu EE, Robel P (1989) Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endrocrinology 125:2083–2091CrossRefGoogle Scholar
  18. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J (1998) Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 95:1852–1857PubMedCrossRefGoogle Scholar
  19. Kimoto T, Tsurugizawa T, Ohta Y, Makino J, Tamura Ho, Hojo Y, Takata N, Kawato S (2001) Neurosteroid synthesis by cytochrome P450-containing systems localized in the rat brain hippocampal neurons: N-methyl-d-Aspartate and calcium-dependent synthesis. Endocrinology 142:3578–3589PubMedCrossRefGoogle Scholar
  20. King SR, Manna PR, Ishii T, Syapin PJ, Ginsberg SD, Wilson K, Walsh LP, Parker KL, Stocco DM, Smith RG, Lamb DJ (2002) An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci 22:10613–10620PubMedGoogle Scholar
  21. Kölsch H, Lütjohann D, von Bergmann K, Heun R (2003) The role of 24S-hydroxycholesterol in Alzheimer’s disease. J Nutr Health Aging 7:37–41PubMedGoogle Scholar
  22. Kurata K, Takebayshi M, Morinobu S, Yamawaki S (2004) Beta-estradiol, dehydroepiandrosterone and dehydroepiandrosterone sulfate protect against N-methyl-d-aspartate-induced neurotoxicity in rat hippocampal neurons by different mechanisms. J Pharmacol Exp Ther 311:237–245PubMedCrossRefGoogle Scholar
  23. Labombarda F, Pianos A, Liere P, Eychenne B, Gonzalez S, Cambourg A, De Nicola AF, Schumacher M, Guennoun R (2006) Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry. Endocrinology 147:1847–1859PubMedCrossRefGoogle Scholar
  24. Le Goascogne C, Gouézou M, Robel P, Defaye G, Chambaz E, Waterman MR, Baulieu EE (1989) The cholesterol side-chain cleavage complex in human brain white matter. J Neuroendocrinol 1:153–156CrossRefGoogle Scholar
  25. Le Goascogne C, Robel P, Gouézou M, Sananès N, Baulieu EE, Waterman MR (1987) Neurosteroids: cytochrome P-450scc in rat brain. Science 237:1212–1215PubMedCrossRefGoogle Scholar
  26. Liere P, Akwa Y, Weill-Engerer S, Eychenne B, Pianos A, Robel P, Sjövall J, Schumacher M, Baulieu EE (2000) Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 739:301–312PubMedCrossRefGoogle Scholar
  27. Meffre D, Pianos A, Liere P, Eychenne B, Cambourg A, Schumacher M, Stein DG, Guennoun R (2007) Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: analysis by gas chromatography/mass spectrometry. Endocrinology 148:2505–2517PubMedCrossRefGoogle Scholar
  28. Ong WY, Goh EW, Lu XR, Farooqui AA, Patel SC, Halliwell B (2003) Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced injury. Brain Pathol 13:250–262PubMedCrossRefGoogle Scholar
  29. Patte-Mensah C, Li S, Mensah-Nyagan AG (2004) Impact of neuropathic pain on the gene expression and activity of cytochrome P450side-chain-cleavage in sensory neural networks. Cell Mol Life Sci 61:2274–2284PubMedCrossRefGoogle Scholar
  30. Roby KF, Larsen D, Deb S, Soares MJ (1991) Generation and characterization of antipeptide antibodies to rat cytochrome P450 side chain cleavage enzyme. Mol Cell Endrocrinol 79:13–20CrossRefGoogle Scholar
  31. Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumatsu N, Kimoto T, Enami T, Suzuki K, Tanabe N, Ishii H, Mukai H, Takahashi T, Hattori TA, Kawato S (2003) Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochimica et Biophysica Acta 1619:301–316PubMedGoogle Scholar
  32. Stoffel-Wagner B (2001) Neurosteroid metabolism in the human brain. Eur J Endocrinol 145:669–679PubMedCrossRefGoogle Scholar
  33. Tagawa N, Sugimoto Y, Yamada J, Kobayashi Y (2006) Strain differences of neurosteroid levels in mouse brain. Steroids 71:776–784PubMedCrossRefGoogle Scholar
  34. Ukena K, Usui M, Kohchi C, Tsutsui K (1998) Cytochrome P450 side-chain cleavage in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 139:137–147PubMedCrossRefGoogle Scholar
  35. Vallée M, Mayo W, Darnaudéry M, Corpéchot C, Young J, Koehl M, Le Moal M, Baulieu EE, Robel P, Simon H (1997) Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA 94:14865–14870PubMedCrossRefGoogle Scholar
  36. Vallée M, Mayo W, Le Moal M (2001) Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Brain Rev 37:301–312CrossRefGoogle Scholar
  37. Veiga S, Garcia-Segura LM, Azcoitia I (2003). Neuroprotection by the steroids pregnenolone and dehydroepiandrosterone is mediated by the enzyme aromatase. J Neurobiol 56:398–406PubMedCrossRefGoogle Scholar
  38. Weil-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2002) Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and non-demented patients. J Clin Endocrinol metab 87:5138–5143CrossRefGoogle Scholar
  39. Zwain IH, Yen SS (1999) Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140:3843–3852PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Wan-Jie Chia
    • 1
  • Andrew M. Jenner
    • 2
    • 3
  • Akhlaq A. Farooqui
    • 4
  • Wei-Yi Ong
    • 1
    • 3
    Email author
  1. 1.Department of AnatomyNational University of SingaporeSingaporeSingapore
  2. 2.Department of BiochemistryNational University of SingaporeSingaporeSingapore
  3. 3.Neurobiology Research ProgrammeNational University of SingaporeSingaporeSingapore
  4. 4.Department of Cellular and Molecular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations