Advertisement

Experimental Brain Research

, Volume 186, Issue 1, pp 1–22 | Cite as

Crossmodal interaction in saccadic reaction time: separating multisensory from warning effects in the time window of integration model

  • Adele DiederichEmail author
  • Hans Colonius
Research Article

Abstract

In a focused attention task saccadic reaction time (SRT) to a visual target stimulus (LED) was measured with an auditory (white noise burst) or tactile (vibration applied to palm) non-target presented in ipsi- or contralateral position to the target. Crossmodal facilitation of SRT was observed under all configurations and stimulus onset asynchrony (SOA) values ranging from  −500 (non-target prior to target) to 0 ms, but the effect was larger for ipsi- than for contralateral presentation within an SOA range from  −200 ms to 0. The time-window-of-integration (TWIN) model (Colonius and Diederich in J Cogn Neurosci 16:1000, 2004) is extended here to separate the effect of a spatially unspecific warning effect of the non-target from a spatially specific and genuine multisensory integration effect.

Keywords

Multisensory integration Warning effect Time-window-of-integration Saccadic eye movement 

Notes

Acknowledgment

This research was supported by grants from Deutsche Forschungsgemeinschaft Di 506/8-1 and /-3. We are grateful to Rike Steenken, and Stefan Rach for several discussions of this work and and to Dr. Annette Schomburg for her help in setting up the experiment.

References

  1. Amlôt R, Walker R, Driver J, Spence C (2003). Multimodal visual-somatosensory integration in saccade generation. Neuropsychologia 41:1–15PubMedCrossRefGoogle Scholar
  2. Arndt A, Colonius H (2003) Two separate stages in crossmodal saccadic integration: evidence from varying intensity of an auditory accessory stimulus. Exp Brain Res 150:417–426PubMedGoogle Scholar
  3. Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55(2):123–132PubMedGoogle Scholar
  4. Bell AH, Meredith A, Van Opstal AJ, Munoz DP (2005) Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol 93:3659–3673PubMedCrossRefGoogle Scholar
  5. Bushara KO, Grafman J, Hallett M (2001) Neural correlates of auditory-visual stimulus onset asynchrony detection. J Neurosci 21:300–304PubMedGoogle Scholar
  6. Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009PubMedCrossRefGoogle Scholar
  7. Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16:8193–8207PubMedGoogle Scholar
  8. Corneil BD, Van Wanrooij M, Munoz DP, Van Opstal AJ (2002). Auditory-visual interactions subserving goal-directed saccades in a complex scene. J Neurophysiol 88:438–454PubMedGoogle Scholar
  9. Diederich A, Colonius H (2004) Modeling the time course of multisensory interaction in manual and saccadic responses. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes. MIT, CambridgeGoogle Scholar
  10. Diederich A, Colonius H (2007a) Why two “distractors” are better than one: modeling the effect of non-target auditory and tactile stimuli on visual saccadic reaction time. Exp Brain Res. doi: 10.1007/s00221-006-0768-0
  11. Diederich A, Colonius H (2007b) Modeling spatial effects in visual-tactile saccadic reaction time. Percept Psychophys 69(1):56–67PubMedGoogle Scholar
  12. Diederich A, Colonius H, Bockhorst D, Tabeling S (2003) Visual-tactile spatial interaction in saccade generation. Exp Brain Res 148:328–337PubMedGoogle Scholar
  13. Doyle MC, Walker R (2002) Multisensory interactions in saccade target selection: curved saccade trajectories. Exp Brain Res 142:116–130PubMedCrossRefGoogle Scholar
  14. Eimer M (2001) Crossmodal links in spatial attention between vision, audition, and touch: evidence from event-related brain potentials. Neuropsychologia 39:1292–1303PubMedCrossRefGoogle Scholar
  15. Frens MA, Van Opstal AJ (1998) Visual-auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Res Bull 46(3):211–224PubMedCrossRefGoogle Scholar
  16. Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Percept Psychophys 57:802–816PubMedGoogle Scholar
  17. Groh JM, Sparks DL (1996) Saccades to somotosensory targets. III. Eye-position-dependent somatosensory activity in primates superior colliculus. J Neurophysiol 75:439-453PubMedGoogle Scholar
  18. Harrington LK, Peck CK (1998) Spatial disparity affects visual-auditory interactions in human sensorimotor processing. Exp Brain Res 122:247–252PubMedCrossRefGoogle Scholar
  19. Hublet C, Morais J, Bertelson P (1976) Spatial constraints on focussed attention: beyond the right side advantage. Perception 5:3–8PubMedCrossRefGoogle Scholar
  20. Hughes HC, Nelson MD, Aronchick DM (1998) Spatial characteristics of visual-auditory summation in human saccades. Vis Res 38:3955–3963PubMedCrossRefGoogle Scholar
  21. Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85:506–522PubMedGoogle Scholar
  22. Jiang W, Jiang H, Stein BE (2002) Two corticotectal areas facilitate orientation behavior. J Cogn Neurosci 14:1240–1255PubMedCrossRefGoogle Scholar
  23. Kennett S, Eimer M, Spence C, Driver J (2001) Tactile-visual links in exogenous spatial attention under different postures: convergent evidence from psychophysics and ERPs. J Cogn Neurosci 13:462–478PubMedCrossRefGoogle Scholar
  24. Klein R, Kingstone A (1993) Why do visual offsets reduce saccadic latencies? Behav Brain Sci 16(3):583–584CrossRefGoogle Scholar
  25. Lagarias JC, Reeds JA, Wright MH, and Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147CrossRefGoogle Scholar
  26. Lewald J, Guski R (2003) Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cogn Brain Res 16:468–478CrossRefGoogle Scholar
  27. McDonald JJ, Teder-Sälejärvi WA, Hillyard SA (2000). Involuntary orienting to sound improves visual perception. Nature 407:906–908PubMedCrossRefGoogle Scholar
  28. Meredith MA (2002) On the neural basis for multisensory convergence: a brief overview. Cogn Brain Res 14:31–40CrossRefGoogle Scholar
  29. Meredith MA, Stein BE (1986a) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662PubMedGoogle Scholar
  30. Meredith MA, Stein BE (1986b) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365:350–354PubMedCrossRefGoogle Scholar
  31. Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 10:3215–3229Google Scholar
  32. Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17:154–163CrossRefGoogle Scholar
  33. Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cogn Brain Res 25:499–507CrossRefGoogle Scholar
  34. Nickerson RS (1973) Intersensory facilitation of reaction time: energy summation or preparation enhancement. Psychol Rev 80:489–509PubMedCrossRefGoogle Scholar
  35. Posner MI (1980) Orienting of attention. Quart J Exp Psychol 32:3–25CrossRefGoogle Scholar
  36. Rach S, Diederich A (2006) Visual-tactile integration: Does stimulus duration influence the relative amount of response enhancement? Exp Brain Res 173:514–520PubMedCrossRefGoogle Scholar
  37. Reuter-Lorenz PA, Hughes HC, Fendrich R (1991) The reduction of saccadic latency by prior offset of the fixation point: an analysis of the gap effect. Percept Psychophys 49(2):167–175PubMedGoogle Scholar
  38. Ross SM, Ross LE (1981) Saccade latency and warning signals: effects of auditory and visual stimulus onset and offset. Percept Psychophys 29(5):429–437PubMedGoogle Scholar
  39. Schaefer M, Heinze HJ, Rotte M (2005) Viewing touch improves tactile sensory threshold. Neuroreport 16(4):367–70PubMedCrossRefGoogle Scholar
  40. Spence C, Driver J (1997) Audiovisual links in exogenous covert spatial orienting. Perc Psychophys 59(1):1–22Google Scholar
  41. Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:R519–R521PubMedCrossRefGoogle Scholar
  42. Stein BE, Meredith MA (1993) The merging of the senses. MIT, CambridgeGoogle Scholar
  43. Van Atteveldt NM, Formisano E, Blomert L, Goebel R (2006) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex. doi: 10.1093/cercor/bhl007
  44. Van Opstal AJ, Munoz DP (2004) Auditory-visual interactions subserving primate gaze orienting. In: Calvert G, SpenceC , Stein BE (eds) Handbook of multisensory processes. MIT, Cambridge, pp 373–393Google Scholar
  45. Van Wassenhove V, Grant KW, Poeppel D (2007) Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45:598–607PubMedCrossRefGoogle Scholar
  46. Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266PubMedGoogle Scholar
  47. Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004) Unifying multisensory signals across time and space. Exp Brain Res 158:252–258PubMedCrossRefGoogle Scholar
  48. Ward LM (1994) Supramodal and modality-specific mechanisms for stimulus-driven shifts of auditory and visual attention. Can J Exp Psychol 48:242–259PubMedCrossRefGoogle Scholar
  49. Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 96:730–745PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Humanities and Social SciencesJacobs University BremenBremenGermany
  2. 2.Department of PsychologyOldenburg UniversityOldenburgGermany

Personalised recommendations