Experimental Brain Research

, Volume 185, Issue 3, pp 497–507

High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat

  • Christine Winter
  • Christoph Lemke
  • Reinhard Sohr
  • Wassilios Meissner
  • Daniel Harnack
  • Georg Juckel
  • Rudolf Morgenstern
  • Andreas Kupsch
Research Article

Abstract

Despite the benefit high frequency stimulation (HFS) of the subthalamic nucleus (STN) has on motor symptoms of Parkinson’s Disease (PD), accumulating data also suggest effects of STN-HFS on non-motor behavior. This may be related to the involvement of the STN in the limbic basal ganglia-thalamocortical loops. In the present study we investigated the effect of acute STN-HFS on neurotransmission in associated structures of these pathways, i.e. the nucleus accumbens (NAc) core and shell as well as the ventral tegmental area (VTA) using in vivo microdialysis. Experiments were performed in anaesthetized naïve rats and rats selectively lesioned in the substantia nigra pars compacta (SNc) or VTA. We demonstrate that: 1. STN-HFS leads to an increase in DA in the NAc, 2., these effects are more pronounced in the NAc shell than in the NAc core, 3. STN-HFS leads to a decrease in GABA in the VTA, 4. preceding lesion of the SNc does not seem to affect the effect of STN-HFS on accumbal DA transmission whereas 5. preceding lesion of the VTA seems to prohibit further detection of DA in the NAc. We conclude that STN-HFS significantly affects neurotransmission in the limbic system, which might contribute to explain the non-motor effects of STN-HFS.

Keywords

Subthalamic nucleus High Frequency Stimulation Nucleus accumbens Dopamine Ventral tegmental area Parkinson’s Disease 

Supplementary material

References

  1. Absher JR, Vogt BA, Clark DG, Flowers DL, Gorman DG, Keyes JW, Wood FB (2000) Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 13:220–229PubMedGoogle Scholar
  2. Albanese A, Piacentini S, Romito LM, Leone M, Franzini A, Broggi G, Bussone G (2005) Suicide after successful deep brain stimulation for movement disorders. Neurology 65:499–500PubMedGoogle Scholar
  3. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedCrossRefGoogle Scholar
  4. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedCrossRefGoogle Scholar
  5. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  6. Bassareo V, De Luca MA, Di CG (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719PubMedGoogle Scholar
  7. Baunez C, Christakou A, Chudasama Y, Forni C, Robbins TW (2007) Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. Eur J Neurosci 25:1187–1194PubMedCrossRefGoogle Scholar
  8. Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59:1425–1427PubMedGoogle Scholar
  9. Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11:627–632PubMedCrossRefGoogle Scholar
  10. Benazzouz A, Piallat B, Pollak P, Benabid AL (1995) Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci Lett 189:77–80PubMedCrossRefGoogle Scholar
  11. Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E, Gross C (2004) High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. FASEB J 18:528–530PubMedGoogle Scholar
  12. Bonci A, Malenka RC (1999) Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J Neurosci 19:3723–3730PubMedGoogle Scholar
  13. Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, Savasta M (2006) Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci 26:10768–10776PubMedCrossRefGoogle Scholar
  14. Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, Savasta M (2003) Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol 62:1228–1240PubMedGoogle Scholar
  15. Cadoni C, Di CG (2000) Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. Eur J Pharmacol 387:R23–R25PubMedCrossRefGoogle Scholar
  16. Ceballos-Baumann AO, Boecker H, Bartenstein P, von F I, Riescher H, Conrad B, Moringlane JR, Alesch F (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56:997–1003Google Scholar
  17. Czernecki V, Pillon B, Houeto JL, Welter ML, Mesnage V, Agid Y, Dubois B (2005) Does bilateral stimulation of the subthalamic nucleus aggravate apathy in Parkinson’s disease? J Neurol Neurosurg Psychiatry 76:775–779PubMedCrossRefGoogle Scholar
  18. Darbaky Y, Forni C, Amalric M, Baunez C (2003) High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. Eur J Neurosci 18:951–956PubMedCrossRefGoogle Scholar
  19. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908PubMedCrossRefGoogle Scholar
  20. DiLeone RJ, Georgescu D, Nestler EJ (2003) Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci 73:759–768PubMedCrossRefGoogle Scholar
  21. Doshi PK, Chhaya N, Bhatt MH (2002) Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord 17:1084–1085PubMedCrossRefGoogle Scholar
  22. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156:274–281PubMedCrossRefGoogle Scholar
  23. Fontaine D, Mattei V, Borg M, von LD, Magnie MN, Chanalet S, Robert P, Paquis P (2004) Effect of subthalamic nucleus stimulation on obsessive-compulsive disorder in a patient with Parkinson disease. Case report. J Neurosurg 100:1084–1086PubMedCrossRefGoogle Scholar
  24. Funkiewiez A, Ardouin C, Caputo E, Krack P, Fraix V, Klinger H, Chabardes S, Foote K, Benabid AL, Pollak P (2004) Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:834–839PubMedCrossRefGoogle Scholar
  25. Funkiewiez A, Ardouin C, Cools R, Krack P, Fraix V, Batir A, Chabardes S, Benabid AL, Robbins TW, Pollak P (2006) Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson’s disease. Mov Disord 21:1656–1662PubMedCrossRefGoogle Scholar
  26. Funkiewiez A, Ardouin C, Krack P, Fraix V, Van BN, Xie J, Moro E, Benabid AL, Pollak P (2003) Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson’s disease. Mov Disord 18:524–530PubMedCrossRefGoogle Scholar
  27. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63PubMedCrossRefGoogle Scholar
  28. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263PubMedGoogle Scholar
  29. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedCrossRefGoogle Scholar
  30. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923PubMedGoogle Scholar
  31. Herzog J, Reiff J, Krack P, Witt K, Schrader B, Muller D, Deuschl G (2003) Manic episode with psychotic symptoms induced by subthalamic nucleus stimulation in a patient with Parkinson’s disease. Mov Disord 18:1382–1384PubMedCrossRefGoogle Scholar
  32. Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, Lehrke R, Koulousakis A, Herholz K, Sturm V, Heiss WD (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24:7–16PubMedCrossRefGoogle Scholar
  33. Holsheimer J, Demeulemeester H, Nuttin B, de SP (2000) Identification of the target neuronal elements in electrical deep brain stimulation. Eur J Neurosci 12:4573–4577Google Scholar
  34. Ikemoto S, Kohl RR, McBride WJ (1997) GABA(A) receptor blockade in the anterior ventral tegmental area increases extracellular levels of dopamine in the nucleus accumbens of rats. J Neurochem 69:137–143PubMedCrossRefGoogle Scholar
  35. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495PubMedGoogle Scholar
  36. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  37. Krack P, Kumar R, Ardouin C, Dowsey PL, McVicker JM, Benabid AL, Pollak P (2001) Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 16:867–875PubMedCrossRefGoogle Scholar
  38. Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855PubMedGoogle Scholar
  39. Lee KH, Blaha CD, Harris BT, Cooper S, Hitti FL, Leiter JC, Roberts DW, Kim U (2006) Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci 23:1005–1014PubMedCrossRefGoogle Scholar
  40. Lee KH, Chang SY, Roberts DW, Kim U (2004) Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg 101:511–517PubMedGoogle Scholar
  41. Levy R, Lang AE, Dostrovsky JO, Pahapill P, Romas J, Saint-Cyr J, Hutchison WD, Lozano AM (2001) Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:2105–2118PubMedCrossRefGoogle Scholar
  42. Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann Neurol 42:283–291PubMedCrossRefGoogle Scholar
  43. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111PubMedCrossRefGoogle Scholar
  44. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95PubMedCrossRefGoogle Scholar
  45. Lindvall O, Bjorklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48PubMedGoogle Scholar
  46. Mallet L, Mesnage V, Houeto JL, Pelissolo A, Yelnik J, Behar C, Gargiulo M, Welter ML, Bonnet AM, Pillon B, Cornu P, Dormont D, Pidoux B, Allilaire JF, Agid Y (2002) Compulsions, Parkinson’s disease, and stimulation. Lancet 360:1302–1304PubMedCrossRefGoogle Scholar
  47. Mallet L, Schupbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, Welter ML, Pelissolo A, Ruberg M, Agid Y, Yelnik J (2007) Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA 104:10661–10666PubMedCrossRefGoogle Scholar
  48. Mandat TS, Hurwitz T, Honey CR (2006) Hypomania as an adverse effect of subthalamic nucleus stimulation: report of two cases. Acta Neurochir (Wien) 148:895–897CrossRefGoogle Scholar
  49. Maurice N, Thierry AM, Glowinski J, Deniau JM (2003) Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci 23:9929–9936PubMedGoogle Scholar
  50. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004a) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115:589–595PubMedCrossRefGoogle Scholar
  51. McIntyre CC, Savasta M, Walter BL, Vitek JL (2004b) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21:40–50PubMedCrossRefGoogle Scholar
  52. Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85:601–609PubMedCrossRefGoogle Scholar
  53. Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372–2382PubMedCrossRefGoogle Scholar
  54. Meissner W, Reum T, Paul G, Harnack D, Sohr R, Morgenstern R, Kupsch A (2001) Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats. Neurosci Lett 303:165–168PubMedCrossRefGoogle Scholar
  55. Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59:706–713PubMedGoogle Scholar
  56. Nowak LG, Bullier J (1998a) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp Brain Res 118:477–488PubMedCrossRefGoogle Scholar
  57. Nowak LG, Bullier J (1998b) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp Brain Res 118:489–500PubMedCrossRefGoogle Scholar
  58. Okun MS, Green J, Saben R, Gross R, Foote KD, Vitek JL (2003) Mood changes with deep brain stimulation of STN and GPi: results of a pilot study. J Neurol Neurosurg Psychiatry 74:1584–1586PubMedCrossRefGoogle Scholar
  59. Paul G, Reum T, Meissner W, Marburger A, Sohr R, Morgenstern R, Kupsch A (2000) High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic metabolism in the naive rat. Neuroreport 11:441–444PubMedCrossRefGoogle Scholar
  60. Paxinos G, Watson C (1997) The rat brain. Ref type: generic. Academic, LondonGoogle Scholar
  61. Payoux P, Remy P, Damier P, Miloudi M, Loubinoux I, Pidoux B, Gaura V, Rascol O, Samson Y, Agid Y (2004) Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 61:1307–1313PubMedCrossRefGoogle Scholar
  62. Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440PubMedCrossRefGoogle Scholar
  63. Romito LM, Raja M, Daniele A, Contarino MF, Bentivoglio AR, Barbier A, Scerrati M, Albanese A (2002) Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17:1371–1374PubMedCrossRefGoogle Scholar
  64. Salin P, Manrique C, Forni C, Kerkerian-Le GL (2002) High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci 22:5137–5148PubMedGoogle Scholar
  65. Stefani A, Fedele E, Galati S, Pepicelli O, Frasca S, Pierantozzi M, Peppe A, Brusa L, Orlacchio A, Hainsworth AH, Gattoni G, Stanzione P, Bernardi G, Raiteri M, Mazzone P (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 57:448–452PubMedCrossRefGoogle Scholar
  66. Stefurak T, Mikulis D, Mayberg H, Lang AE, Hevenor S, Pahapill P, Saint-Cyr J, Lozano A (2003) Deep brain stimulation for Parkinson’s disease dissociates mood and motor circuits: a functional MRI case study. Mov Disord 18:1508–1516PubMedCrossRefGoogle Scholar
  67. Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K, Kempermann G (2004) Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 46:41–52PubMedCrossRefGoogle Scholar
  68. Steiner B, Winter C, Hosman K, Siebert E, Kempermann G, Petrus DS, Kupsch A (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300PubMedCrossRefGoogle Scholar
  69. Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A (2003) Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J 17:1820–1830PubMedCrossRefGoogle Scholar
  70. Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12:265–272PubMedCrossRefGoogle Scholar
  71. Thobois S, Mertens P, Guenot M, Hermier M, Mollion H, Bouvard M, Chazot G, Broussolle E, Sindou M (2002) Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 249:529–534PubMedCrossRefGoogle Scholar
  72. Trillet M, Vighetto A, Croisile B, Charles N, Aimard G (1995) Hemiballismus with logorrhea and thymo-affective disinhibition caused by hematoma of the left subthalamic nucleus. Rev Neurol (Paris) 151:416–419Google Scholar
  73. Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, Ma Y, Eidelberg D (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31:301–307PubMedCrossRefGoogle Scholar
  74. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61:89–96PubMedCrossRefGoogle Scholar
  75. Westerink BH, Kwint HF, deVries JB (1996) The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci 16:2605–2611PubMedGoogle Scholar
  76. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMedGoogle Scholar
  77. Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72:259–267PubMedCrossRefGoogle Scholar
  78. Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, Savasta M (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 12:4141–4146PubMedCrossRefGoogle Scholar
  79. Winter C, Hosmann K, Harnack D, Meissner W, Paul G, Morgenstern R, Kupsch A (2006) Subthalamic nucleus lesioning inhibits expression and phosphorylation of c-Jun in nigral neurons in the rat’s 6-OHDA model of Parkinson’s disease. Synapse 60:69–80PubMedCrossRefGoogle Scholar
  80. Winter C, Schenkel J, Burger E, Eickmeier C, Zimmermann M, Herdegen T (2000) The immunophilin ligand FK506, but not GPI-1046, protects against neuronal death and inhibits c-Jun expression in the substantia nigra pars compacta following transection of the rat medial forebrain bundle. Neuroscience 95:753–762PubMedCrossRefGoogle Scholar
  81. Witjas T, Baunez C, Henry JM, Delfini M, Regis J, Cherif AA, Peragut JC, Azulay JP (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20:1052–1055PubMedCrossRefGoogle Scholar
  82. Witt K, Daniels C, Herzog J, Lorenz D, Volkmann J, Reiff J, Mehdorn M, Deuschl G, Krack P (2006) Differential effects of L-dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 18:397–401PubMedGoogle Scholar
  83. Woods SP, Fields JA, Troster AI (2002) Neuropsychological sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a critical review. Neuropsychol Rev 12:111–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christine Winter
    • 1
    • 2
  • Christoph Lemke
    • 1
  • Reinhard Sohr
    • 3
  • Wassilios Meissner
    • 1
    • 5
  • Daniel Harnack
    • 1
  • Georg Juckel
    • 2
    • 4
  • Rudolf Morgenstern
    • 3
  • Andreas Kupsch
    • 1
  1. 1.Department of NeurologyCharité Campus VirchowBerlinGermany
  2. 2.Department of Psychiatry and Psychotherapy, Charité Campus MitteUniversity Medicine BerlinBerlinGermany
  3. 3.Institut of Pharmacology and Toxicology, Charité Campus MitteUniversity Medicine BerlinBerlinGermany
  4. 4.Department of PsychiatryRuhr-University BochumBochumGermany
  5. 5.CNRS UMR 5543, Université Victor Segalen-Bordeaux 2BordeauxFrance

Personalised recommendations