Experimental Brain Research

, Volume 184, Issue 3, pp 339–347 | Cite as

Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation

  • Takenobu Murakami
  • Kenji Sakuma
  • Takashi Nomura
  • Yusuke Uemura
  • Isao Hashimoto
  • Kenji Nakashima
Research Article


Paired-associative stimulation (PAS), combining electrical median nerve stimulation with transcranial magnetic stimulation (TMS) with a variable delay, causes long-term potentiation or depression (LTP/LTD)-like cortical plasticity. In the present study, we examined how PAS over the motor cortex affected a distant site, the somatosensory cortex. Furthermore, the influences of PAS on high-frequency oscillations (HFOs) were investigated to clarify the origin of HFOs. Interstimulus intervals between median nerve stimulation and TMS were 25 ms (PAS25) and 10 ms (PAS10). PAS was performed over the motor and somatosensory cortices. SEPs following median nerve stimulation were recorded before and after PAS. HFOs were isolated by 400–800 Hz band-pass filtering. PAS25 over the motor cortex increased the N20–P25 and P25–N33 amplitudes and the HFOs significantly. The enhancement of the P25–N33 amplitude and the late HFOs lasted more than 60 min. After PAS10 over the motor cortex, the N20–P25 and P25–N33 amplitudes decreased for 40 min, and the HFOs decreased for 60 min. Frontal SEPs were not affected after PAS over the motor cortex. PAS25/10 over the somatosensory cortex did not affect SEPs and HFOs. PAS25/10 over the motor cortex caused the LTP/LTD-like phenomena in a distant site, the somatosensory cortex. The PAS paradigms over the motor cortex can modify both the neural generators of SEPs and HFOs. HFOs may reflect the activation of GABAergic inhibitory interneurons regulating pyramidal neurons in the somatosensory cortex.


Somatosensory-evoked potentials (SEPs) High-frequency oscillations (HFOs) Paired-associative stimulation (PAS) Somatosensory cortex Plasticity 


  1. Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722PubMedGoogle Scholar
  2. Curio G (2000) Linking 600-Hz “spikelike” EEG/MEG wavelets (“sigma-bursts”) to cellular substrates: concepts and caveats. J Clin Neurophysiol 17:377–396PubMedCrossRefGoogle Scholar
  3. Curio G, Mackert BM, Burghoff M, Koetitz R, Abraham-Fuchs K, Harer W (1994) Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol 91:483–487PubMedCrossRefGoogle Scholar
  4. Curio G, Mackert BM, Burghoff M, Neumann J, Nolte G, Scherg M, Marx P (1997) Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neurosci Lett 234:131–134PubMedCrossRefGoogle Scholar
  5. Eisen A, Roberts K, Low M, Hoirch M, Lawrence P (1984) Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filtering. Electroencephalogr Clin Neurophysiol 59:388–395PubMedCrossRefGoogle Scholar
  6. Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158PubMedCrossRefGoogle Scholar
  7. Gobbele R, Buchner H, Curio G (1998) High-frequency (600 Hz) SEP activities originating in the subcortical and cortical human somatosensory system. Electroencephalogr Clin Neurophysiol 108:182–189PubMedCrossRefGoogle Scholar
  8. Goldring S, Aras E, Weber PC (1970) Comparative study of sensory input to motor cortex in animals and man. Electroencephalogr Clin Neurophysiol 29:537–550PubMedCrossRefGoogle Scholar
  9. Hashimoto I, Mashiko T, Imada T (1996) Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. Electroencephalogr Clin Neurophysiol 100:189–203PubMedCrossRefGoogle Scholar
  10. Hashimoto I, Kimura T, Fukushima T, Iguchi Y, Saito Y, Terasaki O, Sakuma K (1999) Reciprocal modulation of somatosensory evoked N20m primary response and high-frequency oscillations by interference stimulation. Clin Neurophysiol 110:1445–1451PubMedCrossRefGoogle Scholar
  11. Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, Huang YZ, Rothwell JC (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043PubMedCrossRefGoogle Scholar
  12. Jones MS, Barth DS (2002) Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 88:1016–1025PubMedGoogle Scholar
  13. Klostermann F, Gobbele R, Buchner H, Curio G (2002) Intrathalamic non-propagating generators of high-frequency (1000 Hz) somatosensory evoked potential (SEP) bursts recorded subcortically in man. Clin Neurophysiol 113:1001–1005PubMedCrossRefGoogle Scholar
  14. Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035PubMedGoogle Scholar
  15. Mochizuki H, Ugawa Y, Machii K, Terao Y, Hanajima R, Furubayashi T, Uesugi H, Kanazawa I (1999) Somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Clin Neurophysiol 110:185–191PubMedCrossRefGoogle Scholar
  16. Mochizuki H, Machii K, Terao Y, Furubayashi T, Hanajima R, Enomoto H, Uesugi H, Shiio Y, Kamakura K, Kanazawa I, Ugawa Y (2003) Recovery function of and effects of hyperventilation on somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Neurosci Res 46:485–492PubMedCrossRefGoogle Scholar
  17. Noel P, Ozaki I, Desmedt JE (1996) Origin of N18 and P14 far-fields of median nerve somatosensory evoked potentials studied in patients with a brain-stem lesion. Electroencephalogr Clin Neurophysiol 98:167–170PubMedCrossRefGoogle Scholar
  18. Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, Mauguiere F, Shibasaki H, Sutherling W, Vibert JF (1994) IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91:6–11PubMedCrossRefGoogle Scholar
  19. Ogawa A, Ukai S, Shinosaki K, Yamamoto M, Kawaguchi S, Ishii R, Takeda M (2004) Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neurosci Lett 358:193–196PubMedCrossRefGoogle Scholar
  20. Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710PubMedGoogle Scholar
  21. Sakuma K, Hashimoto I (1999) High-frequency magnetic oscillations evoked by posterior tibial nerve stimulation. Neuroreport 10:227–230PubMedCrossRefGoogle Scholar
  22. Sakuma K, Sekihara K, Hashimoto I (1999) Neural source estimation from a time-frequency component of somatic evoked high-frequency magnetic oscillations to posterior tibial nerve stimulation. Clin Neurophysiol 110:1585–1588PubMedCrossRefGoogle Scholar
  23. Sakuma K, Takeshima T, Ishizaki K, Nakashima K (2004) Somatosensory evoked high-frequency oscillations in migraine patients. Clin Neurophysiol 115:1857–1862PubMedCrossRefGoogle Scholar
  24. Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379PubMedCrossRefGoogle Scholar
  25. Shimazu H, Kaji R, Tsujimoto T, Kohara N, Ikeda A, Kimura J, Shibasaki H (2000) High-frequency SEP components generated in the somatosensory cortex of the monkey. Neuroreport 11:2821–2826PubMedCrossRefGoogle Scholar
  26. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584PubMedCrossRefGoogle Scholar
  27. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708PubMedCrossRefGoogle Scholar
  28. Storozhuk VM, Khorevin VI, Razumna NN, Tetko IV, Villa AP (2003) The effects of activation of glutamate ionotropic connections of neurons in the sensorimotor cortex in a conditioned reflex. Neurosci Behav Physiol 33:479–488PubMedCrossRefGoogle Scholar
  29. Sun H, Ma CL, Kelly JB, Wu SH (2006a) GABA(B) receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neurosci Lett 399:151–156PubMedCrossRefGoogle Scholar
  30. Sun QQ, Huguenard JR, Prince DA (2006b) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230PubMedCrossRefGoogle Scholar
  31. Tsuji T, Rothwell JC (2002) Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 540:367–376PubMedCrossRefGoogle Scholar
  32. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345PubMedCrossRefGoogle Scholar
  33. Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052PubMedCrossRefGoogle Scholar
  34. Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Takenobu Murakami
    • 1
  • Kenji Sakuma
    • 1
  • Takashi Nomura
    • 1
  • Yusuke Uemura
    • 1
  • Isao Hashimoto
    • 2
  • Kenji Nakashima
    • 1
  1. 1.Department of Neurology, Institute of Neurological Sciences, Faculty of MedicineTottori UniversityYonagoJapan
  2. 2.Kanazawa Institute of TechnologyTokyoJapan

Personalised recommendations