Experimental Brain Research

, Volume 184, Issue 2, pp 233–248

Interval timing and Parkinson’s disease: heterogeneity in temporal performance

  • Hugo Merchant
  • Monica Luciana
  • Catalina Hooper
  • Stacy Majestic
  • Paul Tuite
Research Article

DOI: 10.1007/s00221-007-1097-7

Cite this article as:
Merchant, H., Luciana, M., Hooper, C. et al. Exp Brain Res (2008) 184: 233. doi:10.1007/s00221-007-1097-7


Interval timing deficiencies in Parkinson’s disease (PD) patients have been a matter of debate. Here we test the possibility of PD heterogeneity as a source for this discrepancy. Temporal performance of PD patients and control subjects was assessed during two interval tapping tasks and during a categorization task of time intervals. These tasks involved temporal processing of intervals in the hundreds of milliseconds range; however, they also covered a wide range of behavioral contexts, differing in their perceptual, decision-making, memory, and execution requirements. The results showed the following significant findings. First, there were two clearly segregated subgroups of PD patients: one with high temporal variability in the three timing tasks, and another with a temporal variability that did not differ substantially from control subjects. In contrast, PD patients with high and low temporal variability showed similar perceptual, decision-making, memory, and execution performance in a set of control tasks. Second, a slope analysis, designed to dissociate time-dependent from time-independent sources of variation, revealed that the increase in variability in this group of PD patients was mainly due to an increment in the variability associated with the timing mechanism. Third, while the control subjects showed significant correlations in performance variability across tasks, PD patients, and particularly those with high temporal variability, did not show such task correlations. Finally, the results showed that dopaminergic treatment restored the correlation effect in PD patients, producing a highly significant correlation between the inter-task variability. Altogether, these results indicate that a subpopulation of PD patients shows a strong disruption in temporal processing in the hundreds of milliseconds range. These findings are discussed in terms of the role of dopamine as a tuning element for the synchronization of temporal processing across different behavioral contexts in PD patients.


Interval timing Time perception Time production Parkinson’s disease Heterogeneity of Parkinson’s disease 



Parkinson’s disease


Unified Parkinson disease rating scale


Multiple tap task


Single tap task


Interval categorization task


Standard deviation


Basal ganglia-thalamocortical pathway

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hugo Merchant
    • 1
  • Monica Luciana
    • 3
  • Catalina Hooper
    • 3
  • Stacy Majestic
    • 2
  • Paul Tuite
    • 2
  1. 1.Instituto de NeurobiologiaUNAMMexicoUSA
  2. 2.Department of NeurologyUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of PsychologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations