Experimental Brain Research

, 182:1 | Cite as

Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke

  • Sheikh Arshad SaeedEmail author
  • Kaneez Fatima Shad
  • Taimur Saleem
  • Faisal Javed
  • Muhammad Umair Khan


Stroke is one of the leading causes of mortality and morbidity in advanced countries of the world. Despite the fact that reactive oxygen and nitrogen species (ROS and RNS) are the by-products of normal metabolic processes and mediate important physiological processes, they can inflict damage to the cell if produced in excess due to oxidative stress. In the present review, we focus on the cellular and molecular aspects of ROS and RNS generation and its role in the pathogenesis of stroke produced by hypoxia-reperfusion (H-R) phenomena that elicit oxidative stress. We outline the reasons for the vulnerability of the brain to ischaemic insult, chronic infection and inflammation as well as the natural defence mechanisms against radical mediated injury. We deal with the effect of ROS and RNS on intracellular signaling pathways together with the phenomena of apoptosis, mitochondrial injury and survival associated with these pathways. The intracellular signaling mechanisms influenced by reactive species can have significant effects on the outcome of the condition. Future studies should focus on understanding the molecular mechanisms involved in the action of anti-radicals agents, and their mode of action.


Stroke Reactive oxygen species Chronic inflammation/infection Oxidative stress Ischaemia reperfusion injury Signaling pathways Apoptosis 


  1. Adibhatla RM, Hatcher JF (2003) Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurochem Res 73:308–315Google Scholar
  2. Adibhatla RM, Hatcher JF (2005) 50-diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem Res 30:15–23PubMedCrossRefGoogle Scholar
  3. Adibhatla RM, Hatcher JF, Dempsey RJ (2002) Citicoline: neuroprotective mechanisms in cerebral ischemia. J Neurochem 80:12–23PubMedCrossRefGoogle Scholar
  4. Alexandrova MA, Bochev PG (2005) Oxidative stress during the chronic phase after stroke. Free Radic Biol Med 39:297–316PubMedCrossRefGoogle Scholar
  5. Asahi M, Asahi K, Wang X, Lo EH M (2000) Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab 20:452–457PubMedCrossRefGoogle Scholar
  6. Bolander-Gouaille C (2000) Focus on homocysteine. Springer France 121–123Google Scholar
  7. Carden DL, Granger DN (2000) Pathophysiology of ischaemiareperfusion injury. J Pathol 190:255–266PubMedCrossRefGoogle Scholar
  8. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14PubMedCrossRefGoogle Scholar
  9. Chen RM, Chen TL, Chiu WT, Chang CC (2005) Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 23462–8Google Scholar
  10. Costa D, Gomes A, Reis S, Lima JL, Fernandes E (2005) Hydrogen peroxide scavenging activity by non-steroidal anti-inflammatory drugs. Life Sci 76:2841–2848PubMedCrossRefGoogle Scholar
  11. Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444PubMedCrossRefGoogle Scholar
  12. Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC, Kola I (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78:1389–1399PubMedCrossRefGoogle Scholar
  13. Dhar-Mascareno M, Carcamo JM, Golde DW Manya (2005) Hypoxia—reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C. Free Radic Biol Med 38:1311–1322PubMedCrossRefGoogle Scholar
  14. Endo H, Nito C, Kamada H, Nishi Tand Pak H Chan (2006a) Activation of the Akt/GSK3b signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26:1479–1489PubMedCrossRefGoogle Scholar
  15. Endo H, Saito A, Chan PH (2006b) Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem Soc Trans 34:1283–1286PubMedCrossRefGoogle Scholar
  16. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–9PubMedCrossRefGoogle Scholar
  17. Figueroa S, Oset-Gasque MJ, Arce C, Martinez-Honduvilla CJ, Gonzalez MP (2006) Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture. J Neurosci Res 83:441–449PubMedCrossRefGoogle Scholar
  18. Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan PH (1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 18:1239–1247PubMedCrossRefGoogle Scholar
  19. Fujimura M, Morita-Fujimura Y, Noshita N, Sugawara T, Kawase M, Chan PH (2000) The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci 20:2817–2824PubMedGoogle Scholar
  20. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury. Curr State 54:271–284Google Scholar
  21. Herrmann W (2001) The importance of hyperhomocysteinemia as a risk factor for diseases: an overview. Clin Chem Lab Med 39:666–674PubMedCrossRefGoogle Scholar
  22. Herrmann W, Knapp JP (2002) Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48:471–81PubMedGoogle Scholar
  23. Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. (2000) Cyclooxygenase-2 contributes to n-methyl-d-aspartate- mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 293:417–425PubMedGoogle Scholar
  24. Hillered L, Vespa PM, Hovda DA (2002) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41CrossRefGoogle Scholar
  25. Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148PubMedCrossRefGoogle Scholar
  26. Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ, Mocco J, Pinsky DJ, Fox WD, Israel RH, Boyd TA, Golde DW, Connolly ES (2001) Dehydroascorbic acid, a blood–brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724PubMedCrossRefGoogle Scholar
  27. Ishibashi N, Prokopenko O , Weisbrot-Lefkowitz M, Reuhl KR, Mirochnitchenko O (2002) Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Mol Brain Res 109:34–44PubMedCrossRefGoogle Scholar
  28. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446PubMedCrossRefGoogle Scholar
  29. Iwashita A, Maemoto T, Nakada H, Shima I, Matsuoka N, Hisajima H (2002) A novel potent radical scavenger, 8-(4-fluorophenyl)-2-((2E)-3-phenyl-2-propenoyl)-1,2,3,4-tetrahydropyrazolo[5,1-c] [1,2,4] triazine (FR210575), prevents neuronal cell death in cultured primary neurons and attenuates brain injury after focal ischemia in rats. J Pharmacol Exp Ther 307:961–968CrossRefGoogle Scholar
  30. Kamada H, Nito C, Endo H, Chan PH (2006) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006Google Scholar
  31. Kim DW, Eum WS, Jang SH, Kim SY, Choi HS, Choi SH, An JJ, Lee SH, Lee KS, Han K, Kang TC, Won MH, Kang JH, Kwon OS, Cho SW, Kim TY, Park J, Choi SY (2005) Transduced Tat-SOD fusion protein protects against ischaemic brain injury. Mol Cells 19:88–96PubMedGoogle Scholar
  32. Liu KJ, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80CrossRefGoogle Scholar
  33. MacGregor DG, Avshalumov MV, Rice ME (2003) Brain edema induced by in vitro ischemia: causal factors and neuroprotection. J Neurochem 85:1402–1411PubMedCrossRefGoogle Scholar
  34. Manabe Y, Anrather JA, Kawano T, Niwa K, Zhou P, M. Ross ME, Iadecola C (2004) Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 55:668–675PubMedCrossRefGoogle Scholar
  35. Metodiewa D, Koska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233PubMedCrossRefGoogle Scholar
  36. Paternò R, Ruocco A, PostiglioneaA, Hubsch A, Andresen I, Lang MG (2004) Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke. Cerebrovasc Dis 17:204–211PubMedCrossRefGoogle Scholar
  37. Perttu JL, Armin JG (2003) Inflammation and infections as risk factors for ischemic stroke. Stroke 34:2518–2532CrossRefGoogle Scholar
  38. Pong K (2003) Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 3:127–139PubMedCrossRefGoogle Scholar
  39. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  40. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559PubMedCrossRefGoogle Scholar
  41. Schwartz-Bloom RD, Sah R (2001) g-Aminobutyric acid neurotransmission and cerebral ischemia. J Neurochem 77:353–371PubMedCrossRefGoogle Scholar
  42. Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–47PubMedCrossRefGoogle Scholar
  43. Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to clinical relevance. Prog Neurobiol 64:185–218PubMedCrossRefGoogle Scholar
  44. Stone TW (2005) Adenosine, neurodegeneration and neuroprotection. Neurol Res 27:161–168PubMedCrossRefGoogle Scholar
  45. Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607PubMedCrossRefGoogle Scholar
  46. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:1–6Google Scholar
  47. Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1:17–25PubMedCrossRefGoogle Scholar
  48. Taylor JM, Crack PJ (2004) Impact of oxidative stress on neuronal survival. Clin Exp Pharmacol Physiol 31:397–406PubMedCrossRefGoogle Scholar
  49. Toescu EC (2004) Hypoxia sensing and pathways of cytosolic calcium increases. Cell Calcium 36:187–199PubMedCrossRefGoogle Scholar
  50. Umemoto S, Tanaka M, Kawahara S, Kubo M, Umeji K, Hashimoto R, Matsuzaki M (2004) Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res 27:877–885PubMedCrossRefGoogle Scholar
  51. Weber V, Rubat C, Duroux E, Lartigue C, Madesclairea M, Coudert P (2005) New 3- and 4-hydroxyfuranones as anti-oxidants and anti-inflammatory agents. Bioorg Med Chem 13:4552–4564PubMedCrossRefGoogle Scholar
  52. Williams MS, Henkart PA (1996) Role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas. J Immunol 157:2395PubMedGoogle Scholar
  53. Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86PubMedGoogle Scholar
  54. Yamato M, Egashira T, Utsumi H (2003) Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 35:1619–1631PubMedCrossRefGoogle Scholar
  55. Zipfel GJ, Babcock DJ, Lee JM, Choi DW (2000) Neuronal apoptosis after CNS injury: the roles of glutamate and calciu. 17:857–869Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sheikh Arshad Saeed
    • 1
    Email author
  • Kaneez Fatima Shad
    • 1
  • Taimur Saleem
    • 1
  • Faisal Javed
    • 1
  • Muhammad Umair Khan
    • 1
  1. 1.Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan

Personalised recommendations