Experimental Brain Research

, Volume 182, Issue 4, pp 537–548 | Cite as

Alleviating the ‘crossed-hands’ deficit by seeing uncrossed rubber hands

Research Article


Localizing and reacting to tactile events on our skin requires the coordination between primary somatotopic projections and an external representation of space. Previous research has attributed an important role to early visual experience in shaping up this mapping. Here, we addressed the role played by immediately available visual information about body posture. We asked participants to determine the temporal order of two successive tactile events delivered to the hands while they adopted a crossed or an uncrossed-hands posture. As previously found, hand-crossing led to a dramatic impairment in tactile localization, which is a phenomenon attributed to a mismatch between somatotopic and externally-based frames of reference. In the present study, however, participants watched a pair of rubber hands that were placed either in a crossed or uncrossed posture (congruent or incongruent with the posture of their own hands). The results showed that the crossed-hands deficit can be significantly ameliorated by the sight of uncrossed rubber hands (Experiment 1). Moreover, this visual modulation seemed to depend critically on the degree to which the visual information about the rubber hands can be attributed to one’s own actions, in a process revealing short-term adaptation (Experiment 2).


Multisensory integration Rubber-hand illusion Somatosensation Temporal order judgements Vision 



Just noticeable difference


Light-emitting diode


Point of subjective simultaneity


Primary somatosensory cortex


Stimulus onset asynchrony


Temporal order judgement



This work was supported by a grant from the Spanish Ministerio de Educación y Ciencia TIN2004-04363-C03-02. E.A. is supported by a fellowship Beca de Formación de Profesorado Universitario from the Spanish Ministerio de Educación y Ciencia. We would like to thank Joan López-Moliner for his valuable help with the data analyses. We would also like to thank Mikel Santesteban and Aida Mallorquí.


  1. Aglioti S, Smania N, Peru A (1999) Frames of reference for mapping tactile stimuli in brain-damaged patients. J Cogn Neurosci 11(1):67–79PubMedCrossRefGoogle Scholar
  2. Armel KC, Ramachandran VS (2003) Projecting sensations to external objects: evidence from skin conductance response. Proc Biol Sci 270(1523):1499–1506PubMedCrossRefGoogle Scholar
  3. Austen EL, Soto-Faraco S, Enns JT, Kingstone A (2004) Mislocalizations of touch to a fake hand. Cogn Affect Behav Neurosci 4(2):170–181PubMedCrossRefGoogle Scholar
  4. Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285(5425):257–260PubMedCrossRefGoogle Scholar
  5. Benedetti F (1985) Processing of tactile spatial information with crossed fingers. J Exp Psychol Hum Percept Perform 11:517–525PubMedCrossRefGoogle Scholar
  6. Benedetti F (1988) Exploration of a rod with crossed fingers. Percept Psychophys 44:281–284PubMedGoogle Scholar
  7. Berti A, Frassinetti F (2000) When far becomes near: remapping of space by tool use. J Cogn Neurosci 12:415–420PubMedCrossRefGoogle Scholar
  8. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391(6669):756PubMedCrossRefGoogle Scholar
  9. Craig JC (2003) The effect of hand position and pattern motion in temporal order judgements. Percept Psychophys 65(5):779–788PubMedGoogle Scholar
  10. Craig JC, Belser AN (2006) The crossed-hands deficit in tactile temporal-order judgments: the effect of training. Perception 35:1561–1572PubMedCrossRefGoogle Scholar
  11. Driver J, Grossenbacher PG (1996) Multimodal spatial constraints on tactile selective attention. In: Inui T, McClelland JL (eds) Attention and performance XVI: information integration in perception and communication. MIT Press, Cambridge, pp 209–235Google Scholar
  12. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New YorkGoogle Scholar
  13. Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25(45):10564–10573PubMedCrossRefGoogle Scholar
  14. Facchini S, Aglioti SM (2003) Short term light deprivation increases tactile spatial acuity in humans. Neurology 60(12):1998–1999PubMedGoogle Scholar
  15. Farnè A, Làdavas E (2000) Dynamic size-change of hand peripersonal space following tool use. Neuroreport 11:1645–1649PubMedCrossRefGoogle Scholar
  16. Gallace A, Spence C (2005) Visual capture of apparent limb position influences tactile temporal order judgments. Neurosci Lett 379(1):63–68PubMedCrossRefGoogle Scholar
  17. Henri V (1898) Über die Raumwahrnehmung des Tastsinnes: Ein Beitrag zur experimentellen Psychologie [On the spatial perception of the tactile sense: A contribution to experimental psychology]. Reuther & Reichard, BerlinGoogle Scholar
  18. Holmes NP, Spence C (2004) The body schema and the multisensory representation(s) of peripersonal space. Cogn Process 5(2):94–105PubMedCrossRefGoogle Scholar
  19. Holmes NP, Spence C (2005) Visual bias of unseen hand position with a mirror: spatial and temporal factors. Exp Brain Res 166(3–4):489–497PubMedCrossRefGoogle Scholar
  20. Holmes NP, Calvert GA, Spence C (2004) Extending or projecting peripersonal space with tools? Multisensory interactions highlight only the distal and proximal ends of tools. Neurosci Lett 372:62–67PubMedCrossRefGoogle Scholar
  21. Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7(14):2325–2330PubMedCrossRefGoogle Scholar
  22. Kanai R, Sheth BR, Shimojo S (2004) Stopping the motion and perceptual mislocalization. Vision Res 44:2605–2619PubMedCrossRefGoogle Scholar
  23. Kauffman T, Theoret H, Pascual-Leone A (2002) Braille character discrimination in blindfolded human subjects. Neuroreport 13(5):571–574PubMedCrossRefGoogle Scholar
  24. Kitazawa S (2002) Where conscious sensation takes place. Conscious Cogn 11:475–477PubMedCrossRefGoogle Scholar
  25. Kóbor I, Furedi L, Kovacs G, Spence C, Vidnyanszky Z (2006) Back-to-front: improved tactile discrimination performance in the space you cannot see. Neurosci Lett 400(1–2):163–167PubMedCrossRefGoogle Scholar
  26. Lakatos S, Shepard RN (1997) Time–distance relations in shifting attention between locations on one’s body. Percept Psychophys 59:557–566PubMedGoogle Scholar
  27. Lloyd D (2007) Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand. Brain Cogn (in press)Google Scholar
  28. Lloyd D, Morrison I, Roberts N (2006) Role for human posterior parietal cortex in visual processing of aversive objects in peripersonal space. J Neurophysiol 95(1):205–214PubMedCrossRefGoogle Scholar
  29. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86PubMedCrossRefGoogle Scholar
  30. Maravita A, Husain M, Clarke K, Driver J (2001) Reaching with a tool extends visual–tactile interactions into far space: evidence from cross-modal extinction. Neuropsychologia 39:580–585PubMedCrossRefGoogle Scholar
  31. Maravita A, Clarke K, Husain M, Driver J (2002a) Active tool use with the contralesional hand can reduce cross-modal extinction of touch on that hand. Neurocase 8:411–416PubMedCrossRefGoogle Scholar
  32. Maravita A, Spence C, Kennett S, Driver J (2002b) Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 83:B25–B34PubMedCrossRefGoogle Scholar
  33. Maravita A, Spence C, Sergent C, Driver J (2002c) Seeing your own touched hands in a mirror modulates cross-modal interactions. Psychol Sci 13(4):350–355PubMedCrossRefGoogle Scholar
  34. Moscovitch M, Behrmann M (1994) Coding of spatial information in the somatosensory system: evidence from patients with neglect following parietal lobe damage. J Cogn Neurosci 6:151–155CrossRefGoogle Scholar
  35. Pallier C, Dupoux E, Jeannin X (1997) Expe5: an expandable programming language for on-line psychological experiments. Behav Res Methods Instrum Comput 29:322–327Google Scholar
  36. Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11(5):353–359PubMedCrossRefGoogle Scholar
  37. Penfield W, Rasmussen T (1950) The cerebral cortex of man: a clinical study of localization of function. Hafner, New YorkGoogle Scholar
  38. Ponzo M (1910) Intorno ad alcune illusioni nel campo delle sensazioni tattili, sull’illusione di Aristotele e fenomeni analoghi [On some tactile illusions, Aristotle’s illusion, and similar phenomena]. Archiv für die Gesamte Psychologie 16:307–345Google Scholar
  39. Pouget A, Ducom JC, Torri J, Bavelier D (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83(1):B1–B11PubMedCrossRefGoogle Scholar
  40. Rinker MA, Craig JC (1994) The effect of spatial orientation on the perception of moving tactile stimuli. Percept Psychophys 56:356–362PubMedGoogle Scholar
  41. Röder B, Rösler F, Spence C (2004) Early vision impairs tactile perception in the blind. Curr Biol 14:121–124PubMedGoogle Scholar
  42. Schicke T, Röder B (2006) Spatial remapping of touch: confusion of perceived stimulus order across hand and foot. Proc Natl Acad Sci USA 103(31):11808–11813PubMedCrossRefGoogle Scholar
  43. Shore DI, Spry E, Spence C (2002) Confusing the mind by crossing the hands. Cogn Brain Res 14(1):153–163CrossRefGoogle Scholar
  44. Shore DI, Gray K, Spry E, Spence C (2005) Spatial modulation of tactile temporal-order judgments. Perception 34:1251–1262PubMedCrossRefGoogle Scholar
  45. Smania N, Aglioti S (1995) Sensory and spatial components of somaesthesic deficits following right brain damage. Neurology 45:1725–1730PubMedGoogle Scholar
  46. Soto-Faraco S, Ronald A, Spence C (2004) Tactile selective attention and body posture: assessing the multisensory contributions of vision and proprioception. Percept Psychophys 66(7):1077–1094PubMedGoogle Scholar
  47. Spence C, Baddeley R, Zampini M, James R, Shore DI (2003) Multisensory temporal order judgments: when two locations are better than one. Percept Psychophys 65(2):318–328PubMedGoogle Scholar
  48. Sutherland MT (2006) The hand and the ipsilateral primary Somatosensory Cortex. J Neurosci 26(32):8217–8218PubMedCrossRefGoogle Scholar
  49. Tipper SP, Phillips N, Dancer C, Lloyd D, Howard LA, McGlone F (2001) Vision influences tactile perception at body sites that cannot be viewed directly. Exp Brain Res 39:160–167CrossRefGoogle Scholar
  50. Wada M, Yamamoto S, Kitazawa S (2004) Effects of handedness on tactile temporal order judgment. Neuropsychologia 42:1887–1895PubMedCrossRefGoogle Scholar
  51. Yamamoto S, Kitazawa S (2001) Reversal of subjective temporal order due to arm crossing. Nat Neurosci 4:759–765PubMedCrossRefGoogle Scholar
  52. Zampini M, Brown T, Shore DI, Maravita A, Röder B, Spence C (2005a) Audiotactile temporal order judgments. Acta Psychol (Amst) 118(3):277–291CrossRefGoogle Scholar
  53. Zampini M, Harris C, Spence C (2005b) Effect of posture change on tactile perception: impaired direction discrimination performance with interleaved fingers. Exp Brain Res 166:498–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Parc Científic de BarcelonaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Psicologia BàsicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institució Catalana de Recerca i Estudis Avaçats (ICREA)BarcelonaSpain
  4. 4.Grup de Recerca Neurociència Cognitiva, Parc Científic de BarcelonaHospital Sant Joan de Déu (Edifici Docent)Esplugues de Llobregat (Barcelona)Spain

Personalised recommendations