Experimental Brain Research

, Volume 182, Issue 1, pp 109–117 | Cite as

Attention influences the excitability of cortical motor areas in healthy humans

  • Antonella Conte
  • Francesca Gilio
  • Ennio Iezzi
  • Vittorio Frasca
  • Maurizio Inghilleri
  • Alfredo Berardelli
Research Article


We investigated whether human attentional processes influence the size of the motor evoked potentials (MEP) facilitation and the duration of the cortical silent period (CSP) elicited by high-frequency repetitive transcranial magnetic stimulation (rTMS). In healthy subjects we assessed the effects of 5 Hz-rTMS, delivered in trains of 10 stimuli at suprathreshold intensity over the hand motor area, on the MEP size and CSP duration in different attention-demanding conditions: “relaxed,” “target hand,” and “non-target hand” condition. We also investigated the inhibitory effects of 1 Hz-rTMS conditioning to the premotor cortex on the 5 Hz-rTMS induced MEP facilitation. F-waves evoked by ulnar nerve stimulation were also recorded. rTMS trains elicited a larger MEP size facilitation when the subjects looked at the target hand whereas the increase in CSP duration during rTMS remained unchanged during the three attention-demanding conditions. The conditioning inhibitory stimulation delivered to the premotor cortex decreased the MEP facilitation during the “target hand” condition, leaving the MEP facilitation during the other conditions unchanged. None of the attentional conditions elicited changes in the F wave. In healthy subjects attentional processes influence the size of the MEP facilitation elicited by high-frequency rTMS and do so through premotor-to-motor connections.


Attention Cortical plasticity Healthy subjects Magnetic stimulation Motor cortex 


  1. Berardelli A, Inghilleri M, Rothwell JC, Romeo S, Curra A, Gilio F, Modugno N, Manfredi M (1998) Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res 122:79–84PubMedCrossRefGoogle Scholar
  2. Berardelli A, Inghilleri M, Gilio F, Romeo S, Pedace F, Curra A, Manfredi M (1999) Effects of repetitive cortical stimulation on the silent period evoked by magnetic stimulation. Exp Brain Res 125:82–86PubMedCrossRefGoogle Scholar
  3. Bertasi V, Bertolasi L, Frasson E, Priori A (2000) The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation. Exp Brain Res 132:384–389PubMedCrossRefGoogle Scholar
  4. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  5. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756PubMedCrossRefGoogle Scholar
  6. Boyle R, Goldberg JM, Highstein SM (1992) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei III. Correlation with vestibulospinal and vestibule-ocular output pathways. J Neurophysiol 68:471–484PubMedGoogle Scholar
  7. Boyle R (1993) Activity of medial vestibulospinal tract cells during rotation and ocular movement in the alert squirrel monkey. J Neurophysiol 70:2176–2180PubMedGoogle Scholar
  8. Castro-Alamancos MA, Connors BW (1996) Short-term synaptic enhancement and long-term potentiation in neocortex. Proc Natl Acad Sci USA 93:1335–1339PubMedCrossRefGoogle Scholar
  9. Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445PubMedCrossRefGoogle Scholar
  10. Chen R, Yaseen Z, Cohen LG, Hallett M (1998) Time course of corticospinal excitability in reaction time and self-paced movements. Ann Neurol 44:317–325PubMedCrossRefGoogle Scholar
  11. Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve 9:S26–S32PubMedCrossRefGoogle Scholar
  12. Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRefGoogle Scholar
  13. Cooke SF, Bliss TVP (2006) Plasticity in the human central nervous system. Brain 129:1659–1673PubMedCrossRefGoogle Scholar
  14. Di Lazzaro V, Oliviero A, Berardelli A, Mazzone P, Insola A, Pilato F, Saturno E, Dileone M, Tonali PA, Rothwell JC (2002) Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex. Exp Brain Res 144:549–553PubMedCrossRefGoogle Scholar
  15. Eysenck HJ, Thompson W (1966) The effects of distraction on pursuit rotor learning, performance and reminiscence. Br J Psychol 57:99–106PubMedGoogle Scholar
  16. Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple non primary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMedGoogle Scholar
  17. Gandevia SC, Rothwell JC (1987) Knowledge of motor commands and the recruitment of human motoneurons. Brain 110:1117–1130PubMedCrossRefGoogle Scholar
  18. Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455PubMedGoogle Scholar
  19. Gilio F, Curra A, Inghilleri M, Lorenzano C, Suppa A, Manfredi M, Berardelli A (2003) Abnormalities of motor cortex excitability preceding movement in patients with dystonia. Brain 126:1745–1754PubMedCrossRefGoogle Scholar
  20. Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120:123–140PubMedCrossRefGoogle Scholar
  21. Hoshiyama M, Kitamura Y, Koyama S, Watanabe S, Shimojo M, Kakigi R (1996) Reciprocal change of motor evoked potentials preceding voluntary movement in humans. Muscle Nerve 19:125–131PubMedCrossRefGoogle Scholar
  22. Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534PubMedGoogle Scholar
  23. Inghilleri M, Conte A, Frasca V, Curra’ A, Gilio F, Manfredi M, Berardelli A (2004) Antiepileptic drugs and cortical excitability: a study with repetitive transcranial stimulation. Exp Brain Res 154:488–493PubMedCrossRefGoogle Scholar
  24. Inghilleri M, Conte A, Frasca V, Gilio F, Lorenzano C, Berardelli A (2005) Synaptic potentiation induced by rTMS. Effect of lidocaine infusion. Exp Brain Res 163:114–117PubMedCrossRefGoogle Scholar
  25. Jennum P, Winkel H, Fuglsang-Frederiksen A (1995) Repetitive magnetic stimulation and motor evoked potentials. Electroencephalogr Clin Neurophysiol 97:96–101PubMedCrossRefGoogle Scholar
  26. Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997) Anatomy of motor learning I. Frontal cortex and attention to action. J Neurophysiol 77:1313–1324PubMedGoogle Scholar
  27. Li S, Latash ML, Zatsiorsky VM (2004) Effects of motor imagery on finger force responses to transcranial magnetic stimulation. Brain Res Cogn Brain Res 20:273–280PubMedCrossRefGoogle Scholar
  28. Lorenzano C, Gilio F, Inghilleri M, Conte A, Fofi L, Manfredi M, Berardelli A (2002) Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Exp Brain Res 147:186–192PubMedCrossRefGoogle Scholar
  29. MacDonald PA, Paus T (2003) The role of parietal cortex in awareness of self-generated movements: a transcranial magnetic stimulation study. Cereb Cortex 13:962–967PubMedCrossRefGoogle Scholar
  30. Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561PubMedGoogle Scholar
  31. Murase N, Rothwell JC, Kaji R, Urushihara R, Nakamura K, Murayama N, Igasaki T, Sakata-Igasaki M, Mima T, Ikeda A, Shibasaki H (2005) Sub-threshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp. Brain 128:104–115PubMedCrossRefGoogle Scholar
  32. Pascual-Leone A, Valls-Sole J, Wasserman EM, Hallet M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847–858PubMedCrossRefGoogle Scholar
  33. Passingham RE (1996) Attention to action. Philos Trans R Soc Lond B Biol Sci 351:1473–1479PubMedCrossRefGoogle Scholar
  34. Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698PubMedGoogle Scholar
  35. Quartarone A, Bagnato S, Rizzo V, Morgante F, Sant’Angelo A, Crupi D, Romano M, Messina C, Berardelli A, Girlanda P (2005) Corticospinal excitability during motor imagery of a simple tonic finger movement in patients with writer’s cramp. Mov Disord 20:1488–1495PubMedCrossRefGoogle Scholar
  36. Rizzo V, Siebner HR, Modugno N, Pesenti A, Munchau A, Gerschlager W, Webb RM, Rothwell JC (2004) Shaping the excitability of human motor cortex with premotor rTMS. J Physiol 554:483–495PubMedCrossRefGoogle Scholar
  37. Rizzolatti G, Fogassi L, Vittorio G (1997) Parietal cortex: from sight to action. Curr Opin Neurobiol 7:562–567PubMedCrossRefGoogle Scholar
  38. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296PubMedCrossRefGoogle Scholar
  39. Romeo S, Gilio F, Pedace F, Ozkaynak S, Inghilleri M, Manfredi M, Berardelli A (2000) Changes in the cortical silent period after repetitive magnetic stimulation of cortical motor areas. Exp Brain Res 135:504–510PubMedCrossRefGoogle Scholar
  40. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–82PubMedCrossRefGoogle Scholar
  41. Rowe J, Friston K, Frackowiak R, Passingham R (2002) Attention to action: specific modulation of corticocortical interactions in humans. Neuroimage 17:988–998PubMedCrossRefGoogle Scholar
  42. Starr A, Caramia M, Zarola F, Rossini PM (1988) Enhancement of motor cortical excitability in humans by non-invasive electrical stimulation appears prior to voluntary movement. Electroencephalogr Clin Neurophysiol 70:26–32PubMedCrossRefGoogle Scholar
  43. Stefan K, Wycislo M, Classen J (2004) Modulation of associative human motor cortical plasticity by attention. J Neurophysiol 92:66–72PubMedCrossRefGoogle Scholar
  44. Stinear CM, Byblow WD, Steyvers, Levin O, Swinnen SP (2006) Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 168:157–164PubMedCrossRefGoogle Scholar
  45. Takahashi M, Sugawara K, Hayashi S, Kasai T (2004) Excitability changes in human hand motor area dependent on afferent inputs induced by different motor tasks. Exp Brain Res 158:527–532PubMedCrossRefGoogle Scholar
  46. Van den Bos E, Jeannerod M (2002) Sense of body and sense of action both contribute to self-recognition. Cognition 85:177–187PubMedCrossRefGoogle Scholar
  47. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517:591–597PubMedCrossRefGoogle Scholar
  48. Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Antonella Conte
    • 1
    • 2
  • Francesca Gilio
    • 1
  • Ennio Iezzi
    • 1
    • 2
  • Vittorio Frasca
    • 1
  • Maurizio Inghilleri
    • 1
  • Alfredo Berardelli
    • 1
    • 2
  1. 1.Department of Neurological SciencesUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Neuromed Institute (IRCCS)University of Rome “La Sapienza”RomeItaly

Personalised recommendations