Experimental Brain Research

, Volume 181, Issue 2, pp 359–365 | Cite as

Speed of motor re-learning after experimental stroke depends on prior skill

  • Maximilian Schubring-Giese
  • Katiuska Molina-Luna
  • Benjamin Hertler
  • Manuel M. Buitrago
  • Daniel F. Hanley
  • Andreas R. Luft
Research Article

Abstract

Many motor rehabilitation therapies are based on principles of motor learning. Motor learning depends on preliminary knowledge of the trained and other (similar) skills. This study sought to investigate the influence of prior skill knowledge on re-learning of a precision reaching skill after a cortical lesion in rat. One group of animals recovered a previously known skill (skill training, followed by stroke and re-learning training, TST, n = 8). A second group learned the skill for the first time after stroke (ST, n = 6). A control group received prolonged training without stroke (n = 6). Unilateral partial motor cortex lesions were induced photothrombotically after identifying the forelimb representation using epidural stimulation mapping. In TST animals, re-learning after stroke was slower than learning before stroke (post hoc repeated measures ANOVA P = 0.039) and learning in the control group (P = 0.033). De novo learning after stroke (ST group) was not different from healthy learning. These findings show that skill learning can be performed if the motor cortex is partially lesioned; re-learning of a skill after stroke is slowed by prior knowledge of the skill. It remains to be tested in humans whether task novelty positively influences rehabilitation therapy.

Keywords

Experimental stroke Photothrombosis Rat Re-learning Motor learning 

References

  1. Biernaskie J, Szymanska A, Windle V, Corbett D (2005) Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci 21:989–999PubMedCrossRefGoogle Scholar
  2. Buitrago MM, Ringer T, Schulz JB, Dichgans J, Luft AR (2004) Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat. Behav Brain Res 155:249–256PubMedCrossRefGoogle Scholar
  3. Carr J, Shepherd R (1987) A motor relearning programme for stroke. Butterworth Heinemann, OxfordGoogle Scholar
  4. Gharbawie OA, Auer RN, Whishaw IQ (2006) Subcortical middle cerebral artery ischemia abolishes the digit flexion and closing used for grasping in rat skilled reaching. Neuroscience 137:1107–1118PubMedCrossRefGoogle Scholar
  5. Iriki A, Pavlides C, Keller A, Asanuma H (1989) Long-term potentiation in the motor cortex. Science 245:1385–1387PubMedCrossRefGoogle Scholar
  6. Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D (2003) Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 25:789–793PubMedCrossRefGoogle Scholar
  7. Lindner MD, Gribkoff VK, Donlan NA, Jones TA (2003) Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts. J Neurosci 23:10913–10922PubMedGoogle Scholar
  8. Luft AR, Buitrago MM, Ringer T, Dichgans J, Schulz JB (2004) Motor skill learning depends on protein synthesis in motor cortex after training. J Neurosci 24:6515–6520PubMedCrossRefGoogle Scholar
  9. Metz GA, Antonow-Schlorke I, Witte OW (2005) Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms. Behav Brain Res 162:71–82PubMedCrossRefGoogle Scholar
  10. Molina-Luna K, Buitrago MM, Hertler B, Schubring M, Haiss F, Nisch W, Schulz JB, Luft AR (2006) Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays. J Neurosci Methods. doi:10.1016/j.jneumeth.2006.10.025
  11. Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF, Terreberry RR (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396:77–96PubMedCrossRefGoogle Scholar
  12. Newell KM, Liu YT, Mayer-Kress G (2001) Time scales in motor learning and development. Psychol Rev 108:57–82PubMedCrossRefGoogle Scholar
  13. Oermann E, Bidmon HJ, Witte OW, Zilles K (2004) Effects of 1alpha,25 dihydroxyvitamin D3 on the expression of HO-1 and GFAP in glial cells of the photothrombotically lesioned cerebral cortex. J Chem Neuroanat 28:225–238PubMedCrossRefGoogle Scholar
  14. Ramanathan D, Conner JM, Tuszynski MH (2006) A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc Natl Acad Sci USA 103:11370–11375PubMedCrossRefGoogle Scholar
  15. Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536PubMedCrossRefGoogle Scholar
  16. Schroeter M, Kury P, Jander S (2003) Inflammatory gene expression in focal cortical brain ischemia: differences between rats and mice. Brain Res Mol Brain Res 117:1–7PubMedCrossRefGoogle Scholar
  17. Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825PubMedCrossRefGoogle Scholar
  18. Ward NS (2004) Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol 17:725–730PubMedCrossRefGoogle Scholar
  19. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Maximilian Schubring-Giese
    • 1
  • Katiuska Molina-Luna
    • 1
  • Benjamin Hertler
    • 1
  • Manuel M. Buitrago
    • 1
  • Daniel F. Hanley
    • 2
  • Andreas R. Luft
    • 1
    • 2
  1. 1.Neuroplasticity Lab, Department of General Neurology and Hertie Institut for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  2. 2.Division of Brain Injury OutcomesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations