Experimental Brain Research

, 180:667

Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices

  • Hitoshi Mochizuki
  • Toshiaki Furubayashi
  • Ritsuko Hanajima
  • Yasuo Terao
  • Yoko Mizuno
  • Shingo Okabe
  • Yoshikazu Ugawa
Research Article

Abstract

Using near infrared spectroscopy and repetitive transcranial magnetic stimulation (rTMS), we studied interhemispheric interactions between bilateral motor and sensory cortices in humans. RTMS consisted of a triple-pulse burst (50 Hz) repeated every 200 m for 2 s (10 bursts, 30 pulses); one kind of theta burst TMS (TBS) (Huang et al. in Neuron 45:201–206, 2005). The hemoglobin concentration changes were recorded at the right prefrontal cortex, premotor area (PM), primary hand motor area (M1) and primary sensory area (S1) during and after TBS over the left PM, M1 and S1 or sham stimulation in eight normal volunteers. In addition, motor evoked potentials (MEPs) to TMS over the right M1 were recorded from the left first dorsal interosseous muscle after the conditioning TBS over left S1. TBS over PM induced a significant oxy-Hb decrease at the contralateral PM. TBS over M1 elicited a significant oxy-Hb decrease at the contralateral S1, and TBS over S1 significant oxy-Hb decreases at the contralateral M1 and S1. MEPs to TMS of the right M1 were significantly suppressed by the conditioning TBS over the left S1. These results suggest that there are mainly inhibitory interactions between bilateral PMs and bilateral sensorimotor cortices in humans. Those are partly compatible with the previous findings. In addition to between the primary motor cortices, bilateral connection is requisite for smooth bimanual coordination between the sensory cortices or premotor cortices.

Keywords

Interhemispheric interaction Transcranial magnetic stimulation Near-infrared spectroscopy Motor cortex 

References

  1. Bohning DE, Pecheny AP, Epstein CM, Speer AM, Vincent DJ, Dannels W, George MS (1997) Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport 8:2535–2538PubMedCrossRefGoogle Scholar
  2. Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Töpper R (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110:699–704PubMedCrossRefGoogle Scholar
  3. Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M, Cohen P, Yoshioka H, Boretsky R (1988) Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci USA 85:4971–4975PubMedCrossRefGoogle Scholar
  4. Chouinard PA, van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRefGoogle Scholar
  5. Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453PubMedCrossRefGoogle Scholar
  6. Enomoto H, Ugawa Y, Hanajima R, Yuasa Y, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158PubMedCrossRefGoogle Scholar
  7. Fabbri F, Henry ME, Renshaw PF, Nadgir S, Ehrenberg BL, Franceschini MA, Fantini S (2003) Bilateral near-infrared monitoring of the cerebral concentration and oxygen-saturation of hemoglobin during right unilateral electro-convulsive therapy. Brain Res 992:193–204PubMedCrossRefGoogle Scholar
  8. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMedGoogle Scholar
  9. Fink GR, Frackowiak RSJ, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMedGoogle Scholar
  10. Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455PubMedGoogle Scholar
  11. Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, Furubayashi T, Shiio Y, Uesugi H, Kanazawa I (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol 531:849–859PubMedCrossRefGoogle Scholar
  12. Huang YZ, Edwards MJ, Runis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206PubMedCrossRefGoogle Scholar
  13. Jenny AB (1979) Commissural projections of the cortical hand motor area in monkeys. J Comp Neurol 188:137–146PubMedCrossRefGoogle Scholar
  14. Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267PubMedCrossRefGoogle Scholar
  15. Karol EA, Pandya DN (1971) The distribution of the corpus callosum in the rhesus monkey. Brain 94:471–486PubMedCrossRefGoogle Scholar
  16. Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16:817–826PubMedCrossRefGoogle Scholar
  17. Madsen PL, Secher NH (1999) Near-infrared oximetry of the brain. Prog Neurobiol 58:541–560PubMedCrossRefGoogle Scholar
  18. Marconi B, Genovesio A, Giannetti S, Molinari M, Caminiti R (2003) Callosal connections of dorso-lateral premotor cortex. Eur J Neurosci 18:775–788PubMedCrossRefGoogle Scholar
  19. Miyai I, Tanabe H, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192PubMedCrossRefGoogle Scholar
  20. Mochizuki H, Huang YZ, Rothwell JC (2004a) Interhemispheric interaction between human dorsal premotor and cotralateral primary motor cortex. J Physiol 561:331–338CrossRefGoogle Scholar
  21. Mochizuki H, Terao Y, Okabe S, Furubayashi T, Arai N, Iwata NK, Hanajima R, Kamakura K, Motoyoshi K, Ugawa Y (2004b) Effects of motor cortical stimulation on the excitability of contralateral motor and sensory cortices. Exp Brain Res 158:519–526CrossRefGoogle Scholar
  22. Mochizuki H, Ugawa Y, Terao Y, Sakai KL (2006) Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy. Exp Brain Res 169:302–310PubMedCrossRefGoogle Scholar
  23. Münchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561PubMedGoogle Scholar
  24. Noguchi Y, Watanabe E, Sakai KL (2003) An event-related optical topography study of cortical activation induced by single-pulse transcranial magnetic stimulation. Neuroimage 19:156–162PubMedGoogle Scholar
  25. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  26. Oliviero A, Di Lazzaro V, Piazza O, Profice P, Pennisi MA, Della Corte E, Tonali P (1999) Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol 246:1164–1168PubMedCrossRefGoogle Scholar
  27. Plewnia C, Lotze M, Gerloff C (2003) Disinhibition of the contralateral motor cortex by low-frequency rTMS. Neuroreport 14:609–612PubMedCrossRefGoogle Scholar
  28. Schambra HM, Sawaki L, Cohen LG (2003) Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1. Clin Neurophysiol 114:130–133PubMedCrossRefGoogle Scholar
  29. Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B, Bartenstein P (2000) Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 54:956–963PubMedGoogle Scholar
  30. Spetzger U, Laborde G, Gilsbach JM (1995) Frameless neuronavigation in modern neurosurgery. Minim Invasive Neurosurg 38:163–166PubMedCrossRefGoogle Scholar
  31. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713PubMedCrossRefGoogle Scholar
  32. Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104PubMedCrossRefGoogle Scholar
  33. Wenzel R, Wobst P, Heekeren HH, Kwong KK, Brandt SA, Kohl M, Obrig H, Dirnagl U, Villringer A (2000) Saccadic suppression induces focal hypooxygenation in the occipital cortex. J Cereb Blood Flow Metab 20:1103–1110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hitoshi Mochizuki
    • 1
    • 2
  • Toshiaki Furubayashi
    • 1
  • Ritsuko Hanajima
    • 1
  • Yasuo Terao
    • 1
  • Yoko Mizuno
    • 1
  • Shingo Okabe
    • 1
  • Yoshikazu Ugawa
    • 1
  1. 1.Department of Neurology, Division of Neuroscience, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of NeurologyHigashi-Saitama National HospitalHasuda, SaitamaJapan

Personalised recommendations