Experimental Brain Research

, Volume 175, Issue 3, pp 377–399 | Cite as

Space motion sickness

  • James R. LacknerEmail author
  • Paul DiZio
Review Article


Motion sickness remains a persistent problem in spaceflight. The present review summarizes available knowledge concerning the incidence and onset of space motion sickness and aspects of the physiology of motion sickness. Proposed etiological factors in the elicitation of space motion sickness are evaluated including fluid shifts, head movements, visual orientation illusions, Coriolis cross-coupling stimulation, and otolith asymmetries. Current modes of treating space motion sickness are described. Theoretical models and proposed ground-based paradigms for understanding and studying space motion sickness are critically analyzed. Prediction tests and questionnaires for assessing susceptibility to space motion sickness and their limitations are discussed. We conclude that space motion sickness does represent a form of motion sickness and that it does not represent a unique diagnostic entity. Motion sickness arises when movements are made during exposure to unusual force backgrounds both higher and lower in magnitude than 1 g earth gravity.


Motion sickness Sensory conflict Fluid shift Sensorimotor control Weightlessness 



Support was provided by AFOSR grant FA9550-06-1-0102; NASA grants NAG9-1483; and NAG9-1466; NSBRI grant NA00701.


  1. Abe K, Amatomi M, Kajiyama S (1970) Genetical and developmental aspects of susceptibility to motion sickness and frost bite. Hum Hered 30:507Google Scholar
  2. Albery WB, Martin ET (1996) Development of space motion sickness in a ground-based human centrifuge. Acta Astronaut 38:721–731PubMedCrossRefGoogle Scholar
  3. Alexander SJ, Cotzin M, Hill CJ, Ricciuti EA, Wendt GR (1955) Studies of motion sickness. X. Experimental proof that aviation cadets tell the truth on motion sickness history questionnaires. J Psychol 39:403–409Google Scholar
  4. Badeer HS (1998) Anatomical position of heart in snakes with vertical orientation: a new hypothesis. Comp Biochem Physiol A Mol Integr Physiol 119(1):403–405PubMedCrossRefGoogle Scholar
  5. Bagian JP (1991) First intramuscular administration in the U.S. Space Program. J Clin Pharmacol 31(10):920PubMedGoogle Scholar
  6. Bagian JP, Ward DF (1994) A retrospective study of promethazine and its failure to produce the expected incidence of sedation during space flight. J Clin Pharmacol 34:649–651PubMedGoogle Scholar
  7. Bakwin H (1971) Car-sickness in twins. Dev Med Child Neurol 13:310PubMedCrossRefGoogle Scholar
  8. Balaban CD (1999) Vestibular autonomic regulation (including motion sickness and the mechanisms of vomiting). Curr Opin Neurol 12:29–33PubMedCrossRefGoogle Scholar
  9. Baloh RW, Honrubia V (1990) Clinical neurophysiology of the vestibular system. Contemporary neurology series 2nd edn. FA Davis Co, PhiladelphiaGoogle Scholar
  10. von Baumgarten RJ (1986) European vestibular experiments on the Spacelab-1 mission: 1. Overview Exp Brain Res 64:239–246CrossRefGoogle Scholar
  11. von Baumgarten RJ (1987) General remarks on the role of the vestibular system in weightlessness. Arch Otorhinolaryngol 244:135–142CrossRefGoogle Scholar
  12. von Baumgarten RJ, Thumler R (1979) A model for vestibular function in altered gravitational states. Life Sci Space Res 17:161–170Google Scholar
  13. von Baumgarten RJ, Vogel H, Kass JR (1981) Nauseogenic properties of various dynamic and static force environments. Acta Astronaut 8:1005–1013CrossRefGoogle Scholar
  14. Bles W (1998) Coriolis effects and motion sickness modeling. Brain Res Bull 47(5):543–549PubMedCrossRefGoogle Scholar
  15. Bles W, de Jong HAA, Oosterveld WJ (1984) Prediction of seasickness susceptibility. AGARD Conf Proc 372:27Google Scholar
  16. Bles W, de Graaf B, Bos JE, Groen E, Krol JR (1997) A sustained hyper-g load as a tool to simulation space motion sickness. J Gravit Physiol 4(2):p1–p4PubMedGoogle Scholar
  17. Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47(5):481–487PubMedCrossRefGoogle Scholar
  18. Bos JE, Bles W (1998) Modeling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5):537–542PubMedCrossRefGoogle Scholar
  19. Bryan A, Ventura J, Bortolami SB, DiZio P, Lackner JR (2004) Localization of subjective vertical and head midline in altered gravitoinertial force environments. Soc Neurosci AbstGoogle Scholar
  20. Cheung B, Hofer K (1998) Lack of gender difference in motion sickness induced by vestibular Coriolis cross-coupling. J Vestib Res 12(4):191–200Google Scholar
  21. Cheung B, Vaitkus P (1998) Perspectives of electrogastrography and motion sickness. Brain Res Bull 47(5):421–431PubMedCrossRefGoogle Scholar
  22. Cheung BSK, Money KE, Jacobs I (1990) Motion sickness susceptibility and aerobic fitness: a longitudinal study. Aviat Space Environ Med 61:210–204Google Scholar
  23. Cheung BS, Howard IP, Money KE (1991) Visually induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62(6):527–531PubMedGoogle Scholar
  24. Cheung B, Heskin R, Hofer K, Gagnon M (2001) The menstrual cycle and susceptibility to Coriolis-induced sickness. J Vestib Res 11(2):129–136PubMedGoogle Scholar
  25. Clemes SA, Howarth PA (2005) The menstrual cycle and susceptibility to virtual simulation sickness. J Biol Rhythms 20(1):71–82PubMedCrossRefGoogle Scholar
  26. Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optkinetic afternystagmus. J Physiol Lond 270:321–344PubMedGoogle Scholar
  27. Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004:359–376PubMedCrossRefGoogle Scholar
  28. Correia MJ, Hixon WC, Niven JI (1968) On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol Suppl 230:3–20Google Scholar
  29. Costa F, Lavin P, Robertson D, Biaggioni I (1995) Effect of neurovestibular stimulation on autonomic regulation. Clin Auton Res 5(5):289–293PubMedCrossRefGoogle Scholar
  30. Cowings PS, Toscano WB (1982) The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression. Aviat Space Environ Med 53(6):570–575PubMedGoogle Scholar
  31. Cowings IS, Toscano WB (2000) Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J Clin Pharmacol 40:1154–1165PubMedGoogle Scholar
  32. Cowings PS, Billingham J, Toscano B (1977) Learned control of autonomic responses to compensate for the debilitating effects of motion sickness. Theory Psychosom Med 4:318–323Google Scholar
  33. Cowings PS, Suter S, Toscano WB, Kamiya J, Naifeh K (1986) General autonomic components of motion sickness. Psychophysiology 3:542Google Scholar
  34. Cowings PS, Naifeh KH, Toscano WB (1995) The stability of individual patterns of autonomic response to motion sickness stimulation. Aviat Space Environ Med 61:399–405Google Scholar
  35. Cowings PS, Toscano WB, DeRoshia C, Miller NE (2000) Promethazine as a motion sickness treatment: impact on human performance and mood states. Aviat Space Environ Med 71:1013–1022PubMedGoogle Scholar
  36. Cramer DB, Graybiel A, Oosterveld WI (1976) Successful transfer of adaptation acquired in a slow rotation room to motion environments in Navy flight training. In: AGARD CP-203, C2-1, Recent advances in space medicineGoogle Scholar
  37. Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial-temporal properties of velocity storage. Exp Brain Res 151:173–189PubMedCrossRefGoogle Scholar
  38. Dai M, Raphan T, Cohen B (2006) Effects of baclofen on the angular vestibulo-ocular reflex. Exp Brain Res 171:262–271PubMedCrossRefGoogle Scholar
  39. Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59(12):1185–1189PubMedGoogle Scholar
  40. Davis JR, Jennings RT, Beck BG, Bagian JP (1993a) Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med 64:230–233Google Scholar
  41. Davis JR, Jennings RT, Beck BG (1993b) Comparison of treatment strategies for space motion sickness. Acta Astronaut 29:587–591CrossRefGoogle Scholar
  42. de Graaf B, Bles W, Bos JE (1998) Roll motion stimuli: sensory conflict, perceptual weighting and motion sickness. Brain Res Bull 47(5):489–495PubMedCrossRefGoogle Scholar
  43. de Wit G (1953) Seasickness. J Am Med Assoc 86:319–324Google Scholar
  44. Diamond SG, Markham CH (1988) Ocular torsion in upright and tilted positions during hypo- and hypergravity of parabolic flight. Aviat Space Environ Med 59:1158–1162PubMedGoogle Scholar
  45. Diamond SG, Markham CH (1991a) Otolith function in hypo- and hypergravity: relation to space motion sickness. Acta Otolaryngol Suppl (Stockh) 418:19–22CrossRefGoogle Scholar
  46. Diamond SG, Markham CH (1991b) Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med 62:201–205Google Scholar
  47. Diamond SG, Markham CH (1992) Validating the hypothesis of otolith asymmetry as a cause of space motion sickness. Ann N Y Acad Sci 656:725–731PubMedGoogle Scholar
  48. Diamond SG, Markham CH, Money KE (1990) Instability of ocular torsion in zero gravity: possible implications for space motion sickness. Aviat Space Environ Med 61:899–905PubMedGoogle Scholar
  49. DiZio P, Lackner JR (1988) The effects of gravitoinertial force level and head movements on post-rotational nystagmus and illusory after-rotation. Exp Brain Res 70:485–495PubMedCrossRefGoogle Scholar
  50. DiZio P, Lackner JR (1991) Motion sickness susceptibility in parabolic flight and velocity storage activity. Aviat Space Environ Med 62:300–307PubMedGoogle Scholar
  51. DiZio P, Lackner JR (2000) Motion sickness side effects and after-effects of immersive virtual environments created with helmet-mounted visual displays. In: NATO RTO-MP-54, The capability of virtual reality to meet military requirements, pp 11-1–11-4Google Scholar
  52. DiZio P, Lackner JR (2002) Proprioceptive adaptation and after-effects. In: Stanney K (ed) Handbook of virtual environments. Lawrence Erlbaum Associates, NY, pp 751–771Google Scholar
  53. DiZio P, Lackner JR, Evanoff JN (1987a) The influence of gravitointertial force level on oculomotor and perceptual responses to Coriolis, cross-coupling stimulation. Aviat Space Environ Med 58:A218–A223Google Scholar
  54. DiZio P, Lackner JR, Evanoff JN (1987b) The influence of gravitoinertial force level on oculomotor and perceptual responses to sudden-stop stimulation. Aviat Space Environ Med 58:A224–A230Google Scholar
  55. Dobie TG (1974) Airsickness in aircrew. AGARDograph No. 177. Technical Editing and Reproduction Ltd, LondonGoogle Scholar
  56. Doweck I, Gordon CR, Shlitner A, Spitzer O, Gonen A, Binah O, Melamed Y, Shupak A (1997) Alterations in R-R variability associated with experimental motion sickness. J Auton Nerv Syst 67:31–37PubMedCrossRefGoogle Scholar
  57. Egorov BB, Samarin GI (1970) Possible changes in paired working of the vestibular system during weightlessness. Kosm Biol Med 4(2):85–86Google Scholar
  58. Golding JF, Stott JR (1995) Effect of sickness severity on habituation to repeated motion challenges in aircrew referred for air sickness treatment. Aviat Space Environ Med 66:625–630PubMedGoogle Scholar
  59. Golding JF, Stott JR (1997a) Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. Br J Clin Pharmacol 43:633–637CrossRefGoogle Scholar
  60. Golding JF, Stott JR (1997b) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res 7(6):421–428CrossRefGoogle Scholar
  61. Golding JF, Kadzere P, Gresty MA (2005) Motion sickness susceptibility fluctuates through the menstral cycle. Aviat Space Environ Med 76(10):970–973PubMedGoogle Scholar
  62. Gordon CR, Ben-Aryeh H, Szargel R, Attias J (1989) Salivary changes associated with seasickness. J Auton Nerv Syst 26:37PubMedCrossRefGoogle Scholar
  63. Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H (2004) Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol 44(8):837–853PubMedCrossRefGoogle Scholar
  64. Graybiel A (1969) Structural elements in the concept of motion sickness. Aerosp Med 40:351–367PubMedGoogle Scholar
  65. Graybiel A (1974) Measurement of otolith function in man. In: Kornhuber HH (ed) Handbook of sensory physiology, chap 11. Springer, Berlin Heidelberg New York, pp 233–266Google Scholar
  66. Graybiel A (1980) Space motion sickness: Skylab revisited. Aviat Space Environ Med 51:814PubMedGoogle Scholar
  67. Graybiel A, Johnson WH (1963) A comparison of the symptomatology experienced by healthy persons and subjects with loss of labyrinthine function when exposed to unusual patterns of centripetal force in a counter-rotating room. Ann Otorhinolaryngol 72:1–17Google Scholar
  68. Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47(8):873–882 PubMedGoogle Scholar
  69. Graybiel A, Lackner JR (1977) Comparison of susceptibility to motion sickness during rotation at 30 rpm in the earth-horizontal, 10° head-up, and 10° head-down positions. Aviat Space Environ Med 48:7–11PubMedGoogle Scholar
  70. Graybiel A, Lackner JR (1979) Rotation at 30 rpm about the z-axis after 6 hours in the 10° head-down position: effect on susceptibility to motion sickness. Aviat Space Environ Med 50:390–392PubMedGoogle Scholar
  71. Graybiel A, Lackner JR (1980a) A sudden-stop vestibulovisual test for rapid assessment of motion sickness manifestations. Aviat Space Environ Med 51:21–23Google Scholar
  72. Graybiel A, Lackner JR (1980b) Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature. Aviat Space Environ Med 51:211–214Google Scholar
  73. Graybiel A, Lackner JR (1987) Treatment of severe motion sickness with antimotion sickness drug injections. Aviat Space Environ Med 58:773–776PubMedGoogle Scholar
  74. Graybiel A, Niven JI (1953) The absence of residual effects attributable to the otolith organs following unilateral labyrinthectomy in man. Laryngoscope 63:18–30PubMedCrossRefGoogle Scholar
  75. Graybiel A, Wood C, Miller E, Cramer D (1968) Diagnostic criteria for grading the severity of acute motion sickness. Bureau of Medicine and Surgery, NASA Order R93, Pensacola, FL, Naval Aerospace Institute Google Scholar
  76. Graybiel A, Deane FR, Colehour JK (1969) Prevention of overt motion sickness by incremental exposure to otherwise highly stressful Coriolis accelerations. Aerosp Med 40:142–148PubMedGoogle Scholar
  77. Graybiel A, Miller EF II, Homick JL (1972) Experiment M131: human vestibular function. In: Proceedings of the Skylab life sciences symposium, NASA TMX-58154, vol IGoogle Scholar
  78. Graybiel A, Miller EF II, Homick JL (1975) Individual difference in susceptibility to motion sickness among six Skylab astronauts. Acta Astronaut 2:155–174PubMedCrossRefGoogle Scholar
  79. Graybiel A, Miller EF II, Homick JL (1977) Experiment M131: human vestibular function. In: Biomedical results for Skylab, NASA SP-377, US Govt Print Office, pp 74–103Google Scholar
  80. Groen JJ (1957) Adaptation. Pract Otorhinolaryngol 19:525–530Google Scholar
  81. Grunfeld E, Gresty MA (1998) Relationship between motion sickness, migraine and menstruation in crew members of a “round the world” yacht race. Brain Res Bull 47(5):433–436 PubMedCrossRefGoogle Scholar
  82. Guignard JC, McCauley ME (1990) The accelerative stimulus for motion sickness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, West Palm Beach, pp 123–151Google Scholar
  83. Gurovskiy NN, Bryanov II, Yegorov AD (1975) Changes in vestibular function during space flight. Acta Astonaut 2(3–4):207–216CrossRefGoogle Scholar
  84. Hardacre LE, Kennedy RS (1965) Some issues in the development of a motion sickness questionnaire for flight students. Bur Med Surg, Proj MR005 13-6002, Subtask 1, Report No. 104, USN School Aviation Medicine, PensacolaGoogle Scholar
  85. Harm DL (1990) Physiology of motion sickness symptoms. In: Crampton GH (ed) Motion and space motion sickness, CRC Press, West Palm Beach, pp 153–177Google Scholar
  86. Harm DL, Parker DE (1994) Preflight adaptation training for spatial orientation and space motion sickness. J Clin Pharmacol 34(6):618–627PubMedGoogle Scholar
  87. Harm DL, Schlegel TT (2002) Predicting motion sickness during parabolic flight. Autonomic Neurosci 97:116–121CrossRefGoogle Scholar
  88. Homick JL, Reshke MF, Vanderploeg JM (1984) Space adaptation syndrome: incidence and operational implications for the space transportation system program. In: Motion sickness: mechanisms, prediction, prevention and treatment, AGARD conference proceeding no. 372, Neuilly sur Seine, France, 36–1Google Scholar
  89. Hu S, Stern RM (1998) Optokinetic nystagmus correlates with severity of vection-induced motion sickness and gastric tachyarrhythmia. Aviat Space Environ Med 69:1162–1165PubMedGoogle Scholar
  90. Hu S, McChesney KA, Player KA, Bahl AM, Buchanan JB, Scozzafava JE (1999) Systematic investigation of physiological correlates of motion sickness induced by viewing an optokinetic rotating drum. Aviat Space Environ Med 70(8):759–765PubMedGoogle Scholar
  91. Jennings RT (1998) Managing space motion sickness. J Vestib Res 8:67–70PubMedCrossRefGoogle Scholar
  92. Johnson WH (1974) Motion sickness, Part 1. Etiology and autonomic effects. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  93. Johnson WH, Sunahara FA, Landolt JP (1993) Motion sickness, vascular changes accompanying pseudo-Coriolis-induced nausea. Aviat Space Environ Med 64:367–370PubMedGoogle Scholar
  94. Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9(2):83–87PubMedGoogle Scholar
  95. Jozsvai EE, Pigeau RA (1996) The effects of autogenic training and biofeedback on motion sickness tolerance. Aviat Space Environ Med 67:963–968PubMedGoogle Scholar
  96. Kakurin LI, Kuzmin MP, Matsnev EI, Mikhailov VM (1976) Physiological effects induced by antiorthostatic hypokinesia. Life Sci Space Res 14:101–108PubMedGoogle Scholar
  97. Kaufman GD, Wood SJ, Gianna CC, Black FO, Paloski WH (2001) Spatial orientation and balance control changes induced by altered gravitoinertial force vectors. Exp Brain Res 137:397–410PubMedCrossRefGoogle Scholar
  98. Kiernan BD, Soykan I, Lin Z, Dale A, McCallum RW (1997) A new nausea model in humans produces mild nausea without electrogastrogram and vasopressin changes. Neurogastroenterol Motil 9(4):257–263PubMedCrossRefGoogle Scholar
  99. Koch KL (1993) Motion sickness. In: Sleisenger MH (ed) Handbook of nausea and vomiting. Parthenon, NYGoogle Scholar
  100. Koch KL (1999) Illusory self-motion and motion sickness: a model for brain-gut interactions and nausea. Dig Dis Sci 44(8 Suppl):53S–57SPubMedGoogle Scholar
  101. Lackner JR, DiZio P (1989) Altered sensorimotor control of the head as an etiological factor in space motion sickness. Percept Mot Skills 8:784–786Google Scholar
  102. Lackner JR, DiZio P (2000a) Aspects of body self-calibration. Trends Cogn Sci 4:279–288CrossRefGoogle Scholar
  103. Lackner JR, DiZio P (2000b) Artificial gravity as a countermeasure in long duration space flight. J Neurosci Res 62:169–176CrossRefGoogle Scholar
  104. Lackner JR, Graybiel A (1984) Elicitation of motion sickness by head movements in the microgravity phase of parabolic flight maneuvers. Aviat Space Environ Med 55:513-520PubMedGoogle Scholar
  105. Lackner JR, Graybiel A (1985) Head movements elicit motion sickness during exposure to microgravity and macrogravity acceleration levels. In: Igarashi M, Black FO (eds) Proceedings of the VII international symposium: vestibular and visual control of posture and locomotor equilibrium. Karger, Basel, pp 170-176Google Scholar
  106. Lackner JR, Graybiel A (1986a) The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent: implications for space motion sickness. Aviat Space Environ Med 57:229-235Google Scholar
  107. Lackner JR, Graybiel A (1986b) Sudden emesis following parabolic flight maneuvers: implications for space motion sickness. Aviat Space Environ Med 57:343-347Google Scholar
  108. Lackner JR, Graybiel A (1994) Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol 34:644–648PubMedGoogle Scholar
  109. Lackner JR, Teixeira R (1977) Optokinetic motion sickness: continuous head movements attenuate the visual induction of apparent self-rotation and symptoms of motion sickness. Aviat Space Environ Med 48:248-253 PubMedGoogle Scholar
  110. Lackner JR, Graybiel A, Johnson WH, Money KE (1987) Asymmetric otolith function and increased susceptibility to motion sickness during exposure to variations in gravitoinertial acceleration level. Aviat Space Environ Med 58:652–657PubMedGoogle Scholar
  111. Lackner JR, Ventura J, DiZio P (2006) Dynamic spatial orientation in altered gravitoinertial force environments. Soc Neurosci Abst 244.11 Google Scholar
  112. Lang IM (1992) New perspectives on the mechanisms controlling vomitus expulsion. In: Bianchi AL, Grelot L, Milelr AD, King GL (eds) Mechanisms and control of emesis, vol 223. Colloque INSERM/John Libbey Eurotext Montrouge, FranceGoogle Scholar
  113. Lang IM (1999) Noxious stimulation of emesis. Dig Dis Sci 44(8 Suppl):58S–63SPubMedGoogle Scholar
  114. Lawson BD (1993) Physiological responses to visually-induced motion sickness. Brandeis University PhD dissertation, Waltham, MAGoogle Scholar
  115. Lentz JM (1976) Nystagmus, turning sensations, and illusory movement in motion sickness susceptibility. Aviat Space Environ Med 47(9):931–936PubMedGoogle Scholar
  116. Lentz JM, Collins WE (1977) Motion sickness susceptibility and related behavioral characteristics in men and women. Aviat Space Environ Med 48(4):316–322PubMedGoogle Scholar
  117. Lillywhite HB (1996) Gravity, blood circulation, and the adaptation of form and function in lower vertebrates. J Exp Zool 275:217–225PubMedCrossRefGoogle Scholar
  118. Lucot JB (1998) Pharamcology of motion sickness. J Vestib Res 8:61–66PubMedCrossRefGoogle Scholar
  119. Markham CH, Diamond SG (1992) Further evidence to support disconjugate eye torsion as a predictor of space motion sickness. Aviat Space Environ Med 63:118–121 PubMedGoogle Scholar
  120. Markham CH, Diamond SG (1993) A predictive test for space motion sickness. J Vestib Res 3(3):289–295 PubMedGoogle Scholar
  121. Markham CH, Diamond SG, Stoller DF (2000) Parabolic flight reveals independent binocular control of otolith-induced eye torsion. Arch Ital de Biol 138:736–86Google Scholar
  122. Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, Gorgiladze GI (1983) Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med 54:312–317PubMedGoogle Scholar
  123. McClure JA, Fregly AR (1972) Effect of environmental temperature on sweat onset during motion sickness. Aerosp Med 43:959PubMedGoogle Scholar
  124. Miller AD (1991) Motion-induced nausea and vomiting. In: Kucharczyk J, Steward DJ, Miller AD (eds) Nausea and vomiting: Recent Research and Clinical Advances, chap 2. CRC Press, Boca RatonGoogle Scholar
  125. Miller EF II, Graybiel A (1970a) The effect of gravitoinertial force upon ocular counterrolling. J Appl Phsyiol 31:697–700Google Scholar
  126. Miller EF II, Graybiel A (1970b) A provocative test for grading susceptibility to motion sickness yielding a single numerical score. Acta Otolaryngol Stockh Suppl 274Google Scholar
  127. Miller EF II, Graybiel A (1972) The semicircular canals as a primary etiological factor in motion sickness. Aerosp Med 43:1065–1074PubMedGoogle Scholar
  128. Miller EF II, Graybiel A (1974) Human ocular counterrolling measured during eight hours of sustained body tilt. Minerva Otorhinolaryngol 24:274–252Google Scholar
  129. Miller AD, Grelot L (1996) The neural basis of nausea and vomiting. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca RatonGoogle Scholar
  130. Miller AD, Leslie RA (1994) The area postrema and vomiting, Front Neuroendocrinol 15:301PubMedCrossRefGoogle Scholar
  131. Miller AD, Wilson VJ (1984) Neurophysiological correlates of motion sickness: role of vestibulocerebellum and “vomiting center” reanalyzed. AGARD Conf Proc 372:21Google Scholar
  132. Miller EF II, Graybiel A, Kellogg RS (1965) Otolith organ activity within Earth standard, one-half standard and zero gravity environment. Aerosp Med 37:399–403Google Scholar
  133. Money KE (1970) Motion sickness. Physiol Rev 50:1–39PubMedGoogle Scholar
  134. Money KE (1990) Motion sickness and evolution. In: Crampton GH (ed) Motion and space sickness, chap 1. CRC Press, Boca RatonGoogle Scholar
  135. Money KE, Cheung B (1983) Another function of the inner ear: facilitation of the emetic response to poisons. Aviat Space Environ Med 54:208PubMedGoogle Scholar
  136. Money KE, Watt DG, Oman CM (1984) Preflight and postflight motion sickness testing of the Spacelab 1 crew. In: AGARD conference proceedings no. 372, Motion sickness: mechanisms, prediction, prevention and treatment, p 33-1-8Google Scholar
  137. Money KE, Lackner JR, Cheung RSK (1996) The autonomic nervous system and motion sickness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 147–173Google Scholar
  138. Montgomery LD, Parmet AJ, Booher CR (1993) Body volume changes during simulated microgravity: auditory changes, segmental fluid redistribution, and regional hemodynamics. Ann Biomed Eng 21(4):417–433PubMedCrossRefGoogle Scholar
  139. Moore TP, Thornton WE (1987) Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med 58(9)Pt2:A91–A96PubMedGoogle Scholar
  140. Mullen TJ, Berger RD, Oman CM, Cohen RJ (1998) Human heart rate variability relation is unchanged during motion sickness. J Vestib Res 8:95–105PubMedCrossRefGoogle Scholar
  141. Nicogossian AE, Uri JJ (1994) Vehicles for human space flight. In: Nicogossian AE, Huntoon CL, Pool SL (eds) Space Physiology and Medicine, 3rd edn. Lea and Febiger, Philadelphia, pp 81–108Google Scholar
  142. Norfleet WT, Degioanni JJ, Calkins DS, Reschke MF, Bungo MW, Kutyna FA, Homick JL (1992) Treatment of motion sickness in parabolic flight with buccal scopolamine. Aviat Space Environ Med 63:46–51PubMedGoogle Scholar
  143. Noskov VB, Grigoriev AI (1994) Diuretic as a means for rapid adaptation to weightlessness. Acta Astronaut 32:841–843PubMedCrossRefGoogle Scholar
  144. Ockels WJ, Furrer R, Messerschmid E (1990) Simulation of space adaptation syndrome on earth. Exp Brain Res 79(3):661–663PubMedCrossRefGoogle Scholar
  145. O’Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aviat Space Environ Med 45(4):366–369Google Scholar
  146. Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Supp 392:1–44Google Scholar
  147. Oman CM (1984) Why do astronauts suffer space sickness? New Sci 103(1418):10–11PubMedGoogle Scholar
  148. Oman CM (1987) Spacelab experiments on space motion sickness. Acta Astronaut 15(1):55–66PubMedCrossRefGoogle Scholar
  149. Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68(2):294–303PubMedGoogle Scholar
  150. Oman CM (1998) Sensory conflict theory and space sickness: our changing perspective. J Vestib Res 8(1):95–105PubMedGoogle Scholar
  151. Oman CM, Balkwill MD (1993) Horizontal angular VOR, nystagmus dumping, and sensation duration in Spacelab SLS-1 crew members. J Vestib Res 3(3):315–330PubMedGoogle Scholar
  152. Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) MIT/Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res 64(2):316–334PubMedCrossRefGoogle Scholar
  153. Oman CM, Lichtenberg BK, Money KE (1990) Space motion sickness monitoring experiment: Spacelab 1. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 217–246Google Scholar
  154. Oman CM, Pouliot CF, Natapoff A (1996) Horizontal angular VOR changes in orbit and parabolic flight: human neurovestibular studies on SLS-2. J App Physiol 81(1):69–81Google Scholar
  155. Parker DE (1977) Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G. Aviat Space Environ Med 48(4):356–361PubMedGoogle Scholar
  156. Parker DE, Parker KL (1990) Adaptation to the simulated stimulation rearrangement of weightlessness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 247–262Google Scholar
  157. Parker DE, Tjernstrom O, Ivarsson A, Gulledge WL, Poston RL (1983) Physiological and behavioral effects of tilt-induced body fluid shifts. Aviat Space Environ Med 54(5):402–409PubMedGoogle Scholar
  158. Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for preflight training. Aviat Space Environ Med 56:601PubMedGoogle Scholar
  159. Patterson JL Jr, Graybiel A (1974) Acceleration, gravity, and weightlessness. In: Slonim NB (ed) Environmental physiology, chap 6. Mosby, St. Louis, pp 163–275Google Scholar
  160. Patterson JL, Goetz RH, Doyle JT, Warren JV, Gauer OH, Detweiler DK, Said SI, Hoernicke H, McGregor M, Keen EN, Smith MH, Hardie EL, Reynolds M, Flatt WP, Waldo DR (1975) Cardiorespiratory dynamics in the ox and giraffe, with comparative observations on man and other mammals. Ann N Y Acad Sci 127:393–413Google Scholar
  161. Putcha L (1999) Pharmacotherapeutics in space. J Gravit Physiol 6(1):P165–P168PubMedGoogle Scholar
  162. Putcha L, Berens KL, Marshburn TH, Ortega HJ, Billica RD (1999) Pharmaceutical use by US astronauts on space shuttle missions. Aviat Space Environ Med 70:705–708PubMedGoogle Scholar
  163. Reason JT (1968) Relations between motion sickness susceptibility, the spiral after-effect and loudness estimation. Br J Psychol 59:385–393PubMedGoogle Scholar
  164. Reason JT (1970) Motion sickness: a special case of sensory rearrangement. Adv Sci 26:386–393PubMedGoogle Scholar
  165. Reason JT, Brand JJ (1975) Motion sickness. Academic Press, New YorkGoogle Scholar
  166. Reason JT, Graybiel A (1970) Progressive adaptation to Coriolis accelerations associated with 1 rpm increments in the velocity of the slow rotation room. Aerosp Med 41:73–79PubMedGoogle Scholar
  167. Reschke MF (1990) Statistical prediction of space motion sickness. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 263–315Google Scholar
  168. Reschke MF, Harm DL, Parker DE, Sandoz GR, Homick JL, Vanderploeg JM (1994) Neurophysiologic aspects: space motion sickness. In: Nicogossian AE, Huntoon CL, Pool SL (eds) Space physiology and medicine, 3rd edn. Lea and Febiger, Philadelphia, pp 228–260Google Scholar
  169. Severac A (1992) Electrical vestibular stimulation and space motion sickness. Acta Astronaut 28:401–408PubMedCrossRefGoogle Scholar
  170. Simanonok KE, Charles JB (1994) Space sickness and fluid shifts: a hypothesis. J Clin Pharmacol 34(6):652–663PubMedGoogle Scholar
  171. Staut CS, Toscano WB, Cowings PS (1995) Reliability of psychophysiological responses across multiple motion sickness stimulation tests. J Vestib Res 5:25–33CrossRefGoogle Scholar
  172. Stern RM, Koch KL, Leibowitz HW, Linblad IM, Shupert CL, Stewart WR (1985) Tachygastria and motion sickness. Aviat Space Environ Med 56:1074–1077PubMedGoogle Scholar
  173. Stern RM, Koch KL, Stewart WR, Lindblad IM (1987a) Spectral analysis of tachgastria recorded during motion sickness. Gastroenterology 92:92–97Google Scholar
  174. Stern RM, Koch KL, Stewart WR, Vasey MW (1987b) Electrogastrography: current issues in validation and methodology. Psychophysiology 24:55Google Scholar
  175. Stern RM, Hu S, Vasey MW, Koch KL (1989) Adaptation to vection-induced symptoms of motion sickness. Aviat Space Environ Med 60:566–572PubMedGoogle Scholar
  176. Stern RM, Koch KL, Vasey MW (1990) The gastrointestinal system. In: Cacioppo JT, Tassinary (eds) Principles of psychophysiology (physical, social and inferential elements). Cambridge University Press, Boston, pp 554–579Google Scholar
  177. Stern RM, Uijtdehaage SHJ, Muth ER, Xu LH, Koch KL (1996) Asian hypersusceptibility to motion sickness. Hum Hered 46(1):7–14PubMedCrossRefGoogle Scholar
  178. Sunahara FA, Farewell J, Mintz L, Johnson WH (1987) Pharmacological interventions for motion sickness: cardiovascular effects. Aviat Space Environ Med 58(9Suppl):A270–A276PubMedGoogle Scholar
  179. Teixeira RA, Lackner JR (1979) Optokinetic motion sickness: attenuation of visually-induced apparent self-rotation by passive head movements. Aviat Space Environ Med 50:264-266 PubMedGoogle Scholar
  180. Thornton WE, Moore TP, Pool SL (1987a) Fluid shifts in weightlessness. Aviat Space Environ Med 58(9)Pt2: A986–A980Google Scholar
  181. Thornton WE, Moore TP, Pool SL, Vanderploeg J (1987b) Clinical characterization and etiology of space motion sickness. Aviat Space Environ Med 58:A1–A8Google Scholar
  182. Thornton WE, Linder BJ, Moore TP, Pool SL (1987c) Gastrointestinal motility in space motion sickness. Aviat Space Environ Med 58:A16–21Google Scholar
  183. Titov G, Caidin M (1962) I am eagle. Bobbs Merrill, IndianapolisGoogle Scholar
  184. Toscano WB, Cowings PS (1982) Reducing motion sickness: a comparison of autogenic-feedback training and an alternative cognitive task. Aviat Space Environ Med 53(5):449–453PubMedGoogle Scholar
  185. Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493PubMedCrossRefGoogle Scholar
  186. Turner M, Griffin MJ (1995) Motion sickness incidence during a round-the-world yacht race. Avait Space Environ Med 66(9):849–856Google Scholar
  187. Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369PubMedGoogle Scholar
  188. Van Citters RL, Kemper WS, Franklin DL (1968) Blood flow and pressure in the giraffe carotid artery. Comp Biochem Physiol 24:1035–1042PubMedCrossRefGoogle Scholar
  189. Wendt GR (1948) Of what importance are psychological factors in motion sickness? J Aviat Med 19:24–33PubMedGoogle Scholar
  190. Williams DR (2003) The biomedical challenges of space flight. Ann Rev Med 54:245–256PubMedCrossRefGoogle Scholar
  191. Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, NYGoogle Scholar
  192. Wood CD, Graybiel A (1968) Evaluation of sixteen antimotion sickness drugs under controlled laboratory conditions. Aerosp Med 39:1341–1344PubMedGoogle Scholar
  193. Wood CD, Stewart JJ, Wood MJ, Manno JE, Manno BR, Mims ME (1990) Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness. Aviat Space Environ Med 61:157–161PubMedGoogle Scholar
  194. Woodman PD, Griffin MJ (1997) Effect of direction of head movement on motion sickness caused by Coriolis stimulation. Aviat Space Environ Med 68:93–98PubMedGoogle Scholar
  195. Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual and actual-inertial stimulation: more than weighted summation of sensory inputs. J Vestib Res 16:23–28Google Scholar
  196. Yates BJ (1996) Vestibular influences on the autonomic nervous system. Ann N Y Acad Sci 781:458–473PubMedGoogle Scholar
  197. Yates BJ (1998) Autonomic reaction to vestibular damage. Otolaryngol Head Neck Surg 119:106–112PubMedCrossRefGoogle Scholar
  198. Yates BJ (2004) The vestibular system and cardiovascular responses to altered gravity. Am J Physiol 286(1):R22Google Scholar
  199. Yates BJ, Miller AD (1996) Vestibular autonomic regulation. CRC Press, Boca RatonGoogle Scholar
  200. Yates BJ, Kerman IA (1998) Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Rev 28:73–82PubMedCrossRefGoogle Scholar
  201. Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15(3):119–129PubMedGoogle Scholar
  202. Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47(5):395–406PubMedCrossRefGoogle Scholar
  203. Yates BJ, Aoki M, Burchill P, Bronstein AM, Gresty MA (1999) Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res 125:476–484PubMedCrossRefGoogle Scholar
  204. Yates BJ, Holmes MJ, Jian BJ (2000) Adaptive plasticity in vestibular influences on cardiovascular control. Brain Res Bull 53(1):3–9PubMedCrossRefGoogle Scholar
  205. Yates BJ, Billig I, Cotter LA (2002) Role of the vestibular system in regulating respiratory muscle activity during movement. Clin Exp Pharmacol Physiol 29(1, 2):112–117PubMedCrossRefGoogle Scholar
  206. Yates BJ, Holmes MJ, Jian BJ (2003) Plastic changes in processing of graviceptive signals during spaceflight potentially contribute to post-flight orthostatic intolerance. J Vestib Res 13(4–6):395–404PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Ashton Graybiel Spatial Orientation Laboratory and Volen Center for Complex SystemsBrandeis UniversityWalthamUSA

Personalised recommendations