Experimental Brain Research

, Volume 177, Issue 2, pp 209–222 | Cite as

Independent roles for the dorsal paraflocculus and vermal lobule VII of the cerebellum in visuomotor coordination

  • Ines Kralj-Hans
  • Joan S. Baizer
  • Catherine Swales
  • Mitchell Glickstein
Research Article


Two distinct areas of cerebellar cortex, vermal lobule VII and the dorsal paraflocculus (DPFl) receive visual input. To help understand the visuomotor functions of these two regions, we compared their afferent and efferent connections using the tracers wheatgerm agglutinin horseradish peroxidase (WGA-HRP) and biotinilated dextran amine (BDA). The sources of both mossy fibre and climbing fibre input to the two areas are different. The main mossy fibre input to lobule VII is from the nucleus reticularis tegmenti pontis (NRTP), which relays visual information from the superior colliculus, while the main mossy fibre input to the DPFl is from the pontine nuclei, relaying information from cortical visual areas. The DPFl and lobule VII both also receive mossy fibre input from several common brainstem regions, but from different subsets of cells. These include visual input from the dorsolateral pons, and vestibular–oculomotor input from the medial vestibular nucleus (MVe) and the nucleus prepositus hypoglossi (Nph). The climbing fibre input to the two cerebellar regions is from different subdivisions of the inferior olivary nuclei. Climbing fibres from the caudal medial accessory olive (cMAO) project to lobule VII, while the rostral MAO (rMAO) and the principal olive (PO) project to the DPFl. The efferent projections from lobule VII and the DPF1 are to all of the recognised oculomotor and visual areas within the deep cerebellar nuclei, but to separate territories. Both regions play a role in eye movement control. The DPFl may also have a role in visually guided reaching.


Saccades Smooth pursuit Superior colliculus Visual cortex Fastigial nucleus Interpositus nucleus Dentate nucleus 



Nucleus of the third (oculomotor) cranial nerve


Nucleus of the fourth (trochlear) cranial nerve


Vermal lobules


Hypoglossal (12th) nerve nucleus


Genu of the facial (seventh) nerve

Cr I

Cerebellar hemisphere Crus I


Cerebellar hemisphere Crus II


Dorsal paraflocculus


Epi-olivary lateral reticular nucleus



Inferior olivary complex


Beta subnucleus


Dorsal accessory olive


Dorsal cap


Dorsomedial cell column


Medial accessory olive


Caudal MAO


Rostral MAO


Principal olive


Dorsal lamella of the principal olive


Ventral lamella of the principal olive


Ventrolateral outgrowth


Interpeduncular nucleus


Lateral vestibular nucleus


Medial vestibular nucleus

Cerebellar nuclei


Lateral cerebellar (dentate) nucleus


Anterior interposed cerebellar nucleus


Posterior interposed cerebellar nucleus


Medial (fastigial) cerebellar nucleus


Nucleus prepositus hypoglossi


Nucleus reticularis gigantocellularis


Dorsal raphé nucleus


Nucleus reticularis pontis caudalis


Nucleus reticularis pontis oralis


nucleus reticularis tegmenti pontis


Periaqueductal gray


Cerebral peduncle


Petrosal lobule


Paramedian lobule


Pontine nuclei


Dorsal peduncular














Paramedian reticular nucleus


Dorsal paramedian reticular nucleus


Ventral paramedian reticular nucleus


Raphe nuclei


Superior olive


  1. Asanuma C, Thach WT, Jones EG (1983) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res 286:299–322PubMedGoogle Scholar
  2. Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965PubMedGoogle Scholar
  3. Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol 255:415–433PubMedGoogle Scholar
  4. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939PubMedGoogle Scholar
  5. Batton RR III, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305PubMedCrossRefGoogle Scholar
  6. Berkley KJ, Hand PJ (1978) Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 180:253–264PubMedCrossRefGoogle Scholar
  7. Bjaalie JG, Sudbo J, Brodal P (1997) Corticopontine terminal fibres form small scale clusters and large scale lamellae in the cat. Neuroreport 8:1651–1655PubMedCrossRefGoogle Scholar
  8. Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486PubMedCrossRefGoogle Scholar
  9. Bowman JP, Sladek JR Jr (1973) Morphology of the inferior olivary complex of the rhesus monkey (Macaca mulatta). J Comp Neurol 152:299–316PubMedCrossRefGoogle Scholar
  10. Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393PubMedCrossRefGoogle Scholar
  11. Brodal A, Gogstad AC (1957) Afferent connexions of the paramedian reticular nucleus of the medulla oblongata in the cat; an experimental study. Acta Anat (Basel) 30:133–151Google Scholar
  12. Brodal A, Pompeiano O (1957) The vestibular nuclei in cat. J Anat 91:438–454PubMedGoogle Scholar
  13. Buneo CA, Andersen RA (2005) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, Corrected proof, available online 21/11/2005 (in press)Google Scholar
  14. Büttner-Ennever JA, Büttner U, Cohen B, Baumgartner G (1982) Vertical glaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105:125–149PubMedCrossRefGoogle Scholar
  15. Büttner U, Fuchs AF, Markert-Schwab G, Buckmaster P (1991) Fastigial nucleus activity in the alert monkey during slow eye and head movements. J Neurophysiol 65:1360–1371PubMedGoogle Scholar
  16. Büttner U, Straube A, Spuler A (1994) Saccadic dysmetria and “intact” smooth pursuit eye movements after bilateral deep cerebellar nuclei lesions. J Neurol Neurosurg Psychiatry 57:832–834PubMedCrossRefGoogle Scholar
  17. Chan-Palay V, Palay SL, Wu JY (1982) Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme cysteine sulfinic acid decarboxylase. Proc Natl Acad Sci USA 79:4221–4225PubMedCrossRefGoogle Scholar
  18. Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291PubMedGoogle Scholar
  19. Dalezios Y, Scudder CA, Highstein SM, Moschovakis AK (1998) Anatomy and physiology of the primate interstitial nucleus of Cajal. II. Discharge pattern of single efferent fibres. J Neurophysiol 80:3100–3111PubMedGoogle Scholar
  20. Deleu D, Michotte A, Ebinger G (1997) Impairment of smooth pursuit in pontine lesions: functional topography based on MRI and neuropathologic findings. Acta Neurol Belg 97:28–35PubMedGoogle Scholar
  21. Frankfurter A, Weber JT, Royce GJ, Strominger NL, Harting JK (1976) An autoradiographic analysis of the tecto-olivary projection in primates. Brain Res 118:245–257PubMedCrossRefGoogle Scholar
  22. Fries W (1990) Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Vis Neurosci 4:205–216PubMedCrossRefGoogle Scholar
  23. Fuchs AF, Robinson FR, Straube A (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70:1723–1740PubMedGoogle Scholar
  24. Fuchs AF, Robinson FR, Straube A (1994) Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol 72:2714–2728PubMedGoogle Scholar
  25. Gerrits N (1990) Vestibular nuclear complex. In: The human nervous system. Academic, Philadelphia, pp 863–888Google Scholar
  26. Gerrits NM, Epema AH, Voogd J (1984) The mossy fibre projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neuroscience 11:627–644PubMedCrossRefGoogle Scholar
  27. Gibson AR, Hansma DI, Houk JC, Robinson FR (1984) A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res 298:235–241PubMedCrossRefGoogle Scholar
  28. Gibson AR, Horn KM, Pong M, Van Kan PL (1998) Construction of a reach-to-grasp (discussion 245–251). Novartis Found Symp 218:233–245PubMedCrossRefGoogle Scholar
  29. Giolli RA, Gregory KM, Suzuki DA, Blanks RH, Lui F, Betelak KF (2001) Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey. Vis Neurosci 18:725–740PubMedCrossRefGoogle Scholar
  30. Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J (1994) Visual pontocerebellar projections in the macaque. J Comp Neurol 349:51–72PubMedCrossRefGoogle Scholar
  31. Glickstein M, May J, Mercier B (1990) Visual corticopontine and tectopontine projections in the macaque. Arch Ital Biol 128:273–293PubMedGoogle Scholar
  32. Glickstein M, May JG III, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359PubMedCrossRefGoogle Scholar
  33. Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J Neurophysiol 35:542–559PubMedGoogle Scholar
  34. Gonzalo-Ruiz A, Leichnetz GR (1990) Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull 25:919–927PubMedCrossRefGoogle Scholar
  35. Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fibre distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 183:551–601PubMedCrossRefGoogle Scholar
  36. Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612PubMedCrossRefGoogle Scholar
  37. Heiser LM, Colby CL (2006) Spatial updating in area LIP is independent of saccade direction. J Neurophysiol 95:2751–2767PubMedCrossRefGoogle Scholar
  38. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463PubMedGoogle Scholar
  39. Ikeda Y, Noda H, Sugita S (1989) Olivocerebellar and cerebelloolivary connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 284:463–488PubMedCrossRefGoogle Scholar
  40. Jeneskog T (1987) Termination in posterior and anterior cerebellum of a climbing fibre pathway activated from the nucleus of Darkschewitsch in the cat. Brain Res 412:185–189PubMedCrossRefGoogle Scholar
  41. Kalil K (1979) Projections of the cerebellar and dorsal column nuclei upon the inferior olive in the rhesus monkey: an autoradiographic study. J Comp Neurol 188:43–62PubMedCrossRefGoogle Scholar
  42. Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78:1753–1768PubMedGoogle Scholar
  43. Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681PubMedGoogle Scholar
  44. Kaneko CRS, Fuchs A (2006) Effect of pharmacological inactivation of nucleus reticularis tegmenti pontis on saccadic eye movements in the monkey. J Neurophysiol (in press)Google Scholar
  45. Kase M, Nagata R, Kato M (1986) Saccade-related activity of periaqueductal gray matter of the monkey. Invest Ophthalmol Vis Sci 27:1165–1169PubMedGoogle Scholar
  46. Klier EM, Wang H, Constantin AG, Crawford JD (2002) Midbrain control of three-dimensional head orientation. Science 295:1314–1316PubMedCrossRefGoogle Scholar
  47. Krauzlis RJ, Miles FA (1998) Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J Neurophysiol 80:2046–2062PubMedGoogle Scholar
  48. Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235: 1–25PubMedCrossRefGoogle Scholar
  49. Luschei ES, Fuchs AF (1972) Activity of brain stem neurons during eye movements of alert monkeys. J Neurophysiol 35:445–461PubMedGoogle Scholar
  50. Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100:181–186PubMedCrossRefGoogle Scholar
  51. Mabuchi M, Kusama T (1970) Mesodiencephalic projections to the inferior olive and the vestibular and perihypoglossal nuclei. Brain Res 17:133–136PubMedCrossRefGoogle Scholar
  52. Marple-Horvat DE, Stein JF (1990) Neuronal activity in the lateral cerebellum of trained monkeys, related to visual stimuli or to eye movements. J Physiol 428:595–614PubMedGoogle Scholar
  53. Matsuzaki R, Kyuhou S (1997) Pontine neurons which relay projections from the superior colliculus to the posterior vermis of the cerebellum in the cat: distribution and visual properties. Neurosci Lett 236:99–102PubMedCrossRefGoogle Scholar
  54. May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36:305–324PubMedCrossRefGoogle Scholar
  55. McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379PubMedCrossRefGoogle Scholar
  56. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712PubMedGoogle Scholar
  57. Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201PubMedCrossRefGoogle Scholar
  58. Mower G, Gibson A, Glickstein M (1979) Tectopontine pathway in the cat: laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. J Neurophysiol 42:1–15PubMedGoogle Scholar
  59. Mustari MJ, Fuchs AF, Wallman J (1988) Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque. J Neurophysiol 60:664–686PubMedGoogle Scholar
  60. Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58:359–378PubMedGoogle Scholar
  61. Noda H, Mikami A (1986) Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation. J Neurophysiol 56:1129–1146PubMedGoogle Scholar
  62. Noda H, Murakami S, Yamada J, Tamada J, Tamaki Y, Aso T (1988) Saccadic eye movements evoked by microstimulation of the fastigial nucleus of macaque monkeys. J Neurophysiol 60:1036–1052PubMedGoogle Scholar
  63. Noda H, Sato H, Ikeda Y, Sugita S (1992) Fastigiofugal fibres encoding horizontal and vertical components of saccades as determined by microstimulation in monkeys. Neurosci Res 13:163–173PubMedCrossRefGoogle Scholar
  64. Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348PubMedCrossRefGoogle Scholar
  65. Olucha F, Martinez-Garcia F, Lopez-Garcia C (1985) A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). J Neurosci Methods 13:131–138PubMedCrossRefGoogle Scholar
  66. Onodera S, Hicks TP (1998) Projections from substantia nigra and zona incerta to the cat’s nucleus of Darkschewitsch. J Comp Neurol 396:461–482PubMedCrossRefGoogle Scholar
  67. Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076PubMedGoogle Scholar
  68. Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  69. Precht W, Strata P (1980) On the pathway mediating optokinetic responses in vestibular nuclear neurons. Neuroscience 5:777–787PubMedCrossRefGoogle Scholar
  70. Quian Quiroga R, Snyder LH, Batista AP, Cui H, Andersen RA (2006) Movement intention is better predicted than attention in the posterior parietal cortex. J Neurosci 26:3615–3620PubMedCrossRefGoogle Scholar
  71. Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37PubMedCrossRefGoogle Scholar
  72. Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39:1246–1256PubMedGoogle Scholar
  73. Robinson FR (2000) Role of the cerebellar posterior interpositus nucleus in saccades I. Effect of temporary lesions. J Neurophysiol 84:1289–1302PubMedGoogle Scholar
  74. Rye DB, Saper CB, Wainer BH (1984) Stabilization of the tetramethylbenzidine (TMB) reaction product: application for retrograde and anterograde tracing, and combination with immunohistochemistry. J Histochem Cytochem 32:1145–1153PubMedGoogle Scholar
  75. Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:915–924PubMedGoogle Scholar
  76. Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642PubMedCrossRefGoogle Scholar
  77. Snyder R, Stowell A (1944) Receving areas of the tactile, auditory and visual systems in the cerebellum. J Neurophysiol 7:331–358Google Scholar
  78. Sousa-Pinto A (1969) Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Res 16:73–83PubMedCrossRefGoogle Scholar
  79. Sousa-Pinto A, Brodal A (1969) Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental–anatomical study. Exp Brain Res 8:364–386PubMedCrossRefGoogle Scholar
  80. Straube A, Helmchen C, Robinson F, Fuchs A, Büttner U (1994) Saccadic dysmetria is similar in patients with a lateral medullary lesion and in monkeys with a lesion of the deep cerebellar nucleus. J Vestib Res 4:327–333PubMedGoogle Scholar
  81. Strominger NL, Truscott TC, Miller RA, Royce GJ (1979) An autoradiographic study of the rubroolivary tract in the rhesus monkey. J Comp Neurol 183:33–45PubMedCrossRefGoogle Scholar
  82. Sugita S, Noda H (1991) Pathways and terminations of axons arising in the fastigial oculomotor region of macaque monkeys. Neurosci Res 10:118–136PubMedCrossRefGoogle Scholar
  83. Suzuki DA, Keller EL (1984) Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res 53:473–478PubMedCrossRefGoogle Scholar
  84. Suzuki DA, May JG, Keller EL, Yee RD (1990) Visual motion response properties of neurons in dorsolateral pontine nucleus of alert monkey. J Neurophysiol 63:37–59PubMedGoogle Scholar
  85. Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol 46:1120–1139PubMedGoogle Scholar
  86. Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126PubMedCrossRefGoogle Scholar
  87. Thier P, Bachor A, Faiss J, Dichgans J, Koenig E (1991) Selective impairment of smooth-pursuit eye movements due to an ischemic lesion of the basal pons. Ann Neurol 29:443–448PubMedCrossRefGoogle Scholar
  88. Thier P, Dicke PW, Haas R, Thielert CD, Catz N (2002) The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci 978:50–62PubMedCrossRefGoogle Scholar
  89. Thier P, Koehler W, Buettner UW (1988) Neuronal activity in the dorsolateral pontine nucleus of the alert monkey modulated by visual stimuli and eye movements. Exp Brain Res 70:496–512PubMedCrossRefGoogle Scholar
  90. van Kan PL, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73PubMedGoogle Scholar
  91. Voogd J (1964) The cerebellum of the cat; structure and fibre connexions. Davis, PhiladelphiaGoogle Scholar
  92. Wiesendanger R, Wiesendanger M (1987) Topography of the corticofugal projection to the lateral reticular nucleus in the monkey. J Comp Neurol 256:570–580PubMedCrossRefGoogle Scholar
  93. Zhang H, Clarke RJ, Gamlin PD (1996) Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response. Exp Brain Res 112:158–162PubMedCrossRefGoogle Scholar
  94. Zhang H, Gamlin PD (1998) Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol 79:1255–1269PubMedGoogle Scholar
  95. Zuk A, Rutherford JG, Gwyn DG (1983) Projections from the interstitial nucleus of Cajal to the inferior olive and to the spinal cord in cat: a retrograde fluorescent double-labeling study. Neurosci Lett 38:95–101PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ines Kralj-Hans
    • 1
  • Joan S. Baizer
    • 2
  • Catherine Swales
    • 3
  • Mitchell Glickstein
    • 1
  1. 1.Department of AnatomyUniversity College LondonLondonEngland
  2. 2.Department of Physiology and BiophysicsUniversity at BuffaloBuffaloUSA
  3. 3.Nuffield Orthopaedic CentreHeadingtonEngland

Personalised recommendations