Experimental Brain Research

, Volume 175, Issue 4, pp 667–675

Learning hierarchically structured action sequences is unaffected by prefrontal-cortex lesion

  • Iring Koch
  • Carlo Reverberi
  • Raffaella I. Rumiati
Research Article

Abstract

This study tested the impact of prefrontal-cortex lesion on learning hierarchically structured action sequences. Using a visual-manual serial reaction time task, we had subjects first perform five blocks of trials with a hierarchically structured 14-element action sequence and then tested for sequence-specific learning by introducing a pseudo-random transfer sequence. Relative to control subjects (N = 39), we found that both lateral frontal (N = 16) and medial frontal (N = 18) patients showed reduced overall performance benefits across the training phase. In contrast, the negative transfer test showed significantly increased reaction times in all patient groups, indicating robust sequence-specific learning. This learning was not significantly different from that of the control group. Taken together, the data suggest that learning hierarchically structured action sequences is unimpaired in patients with prefrontal-cortex lesion.

Keywords

Prefrontal cortex Serial reaction time task Hierarchies Action sequences Procedural learning 

References

  1. Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural substrates of response-based sequence learning using fMRI. J Cogn Neurosci 16(1):127–138PubMedCrossRefGoogle Scholar
  2. Burgess PW (2000) Strategy application disorder: the role of the frontal lobes in human multitasking. Psychol Res 63(3–4):279–288PubMedCrossRefGoogle Scholar
  3. Burgess PW, Veitch E, de Lacy Costello A, Shallice T (2000) The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38(6):848–863PubMedCrossRefGoogle Scholar
  4. Curran T, Smith MD, DiFranco JM, Daggy AT (2001) Structural influences on implicit and explicit sequence learning. In: Medin DL (ed) The psychology of learning and motivation, vol. 40. Academic, San Diego, pp 147–182Google Scholar
  5. Dienes Z, Berry D (1997) Implicit learning: below the subjective threshold. Psychon Bull Rev 4(1):3–23Google Scholar
  6. Doyon J, Owen AM, Petrides M, Sziklas V, Evans AC (1996) Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur J Neurosci 8(4):637–648PubMedCrossRefGoogle Scholar
  7. Doyon J, Gaudreau D, Laforce R Jr, Castonguay M, Bedard PJ, Bedard F, et al (1997) Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn 34(2):218–245PubMedCrossRefGoogle Scholar
  8. Gomez-Beldarrain M, Grafman J, Pascual-Leone A, Garcia-Monco JC (1999) Procedural learning is impaired in patients with prefrontal lesions. Neurology 52(9):1853–1860PubMedGoogle Scholar
  9. Gomez-Beldarrain M, Grafman J, Ruiz de Velasco I, Pascual-Leone A, Garcia-Monco C (2002) Prefrontal lesions impair the implicit and explicit learning of sequences on visuomotor tasks. Exp Brain Res 142(4):529–538PubMedCrossRefGoogle Scholar
  10. Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding. A pet study. Brain 120(Pt 1):123–140Google Scholar
  11. Hoffmann J, Koch I (1998) Implicit learning of loosely defined structures. In: Stadler MA, Frensch PA (eds) Handbook of implicit learning. Sage Publications Inc., Thousand Oaks, pp 161–199Google Scholar
  12. Honda M, Deiber MP, Ibanez V, Pascual-Leone A, Zhuang P, Hallett M (1998) Dynamic cortical involvement in implicit and explicit motor sequence learning. A pet study. Brain 121(Pt 11):2159–2173PubMedCrossRefGoogle Scholar
  13. Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790PubMedGoogle Scholar
  14. Keele SW, Ivry R, Mayr U, Hazeltine E, Heuer H (2003) The cognitive and neural architecture of sequence representation. Psychol Rev 110(2):316–339PubMedCrossRefGoogle Scholar
  15. Kennerley SW, Sakai K, Rushworth MF (2004) Organization of action sequences and the role of the pre-sma. J Neurophysiol 91(2):978–993PubMedCrossRefGoogle Scholar
  16. Koch I, Hoffmann J (2000a) Patterns, chunks, and hierarchies in serial reaction-time tasks. Psychol Res 63(1):22–35CrossRefGoogle Scholar
  17. Koch I, Hoffmann J (2000b) The role of stimulus-based and response-based spatial information in sequence learning. J Exp Psychol Learn Mem Cogn 26(4):863–882CrossRefGoogle Scholar
  18. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97PubMedCrossRefGoogle Scholar
  19. Nissen MJ, Bullemer P (1987) Attentional requirements of learning: evidence from performance measures. Cogn Psychol 19(1):1–32CrossRefGoogle Scholar
  20. Pascual-Leone A, Wassermann EM, Grafman J, Hallett M (1996) The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res 107(3):479–485PubMedCrossRefGoogle Scholar
  21. Reed J, Johnson P (1994) Assessing implicit learning with indirect tests: determining what is learned about sequence structure. J Exp Psychol Learn Mem Cogn 20:585–594CrossRefGoogle Scholar
  22. Restle F (1970) Theory of serial pattern learning: structural trees. Psychol Rev 77(6):481–495CrossRefGoogle Scholar
  23. Robertson EM, Tormos JM, Maeda F, Pascual-Leone A (2001) The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cereb Cortex 11(7):628–635PubMedCrossRefGoogle Scholar
  24. Sakai K, Kitaguchi K, Hikosaka O (2003) Chunking during human visuomotor sequence learning. Exp Brain Res 152(2):229–242PubMedCrossRefGoogle Scholar
  25. Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114(Pt 2):727–741PubMedGoogle Scholar
  26. Stuss DT, Alexander MP, Hamer L, Palumbo C, Dempster R, Binns M, et al (1998) The effects of focal anterior and posterior brain lesions on verbal fluency. J Int Neuropsychol Soc 4(3):265–278PubMedGoogle Scholar
  27. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Iring Koch
    • 1
    • 2
  • Carlo Reverberi
    • 3
    • 4
  • Raffaella I. Rumiati
    • 3
    • 5
  1. 1.Institute of PsychologyRWTH Aachen UniversityAachenGermany
  2. 2.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  3. 3.Programme in NeuroscienceScuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  4. 4.Università Milano-BicoccaMilanItaly
  5. 5.Institute of MedicineResearch Center JülichJülichGermany

Personalised recommendations