Experimental Brain Research

, Volume 173, Issue 2, pp 223–233 | Cite as

Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson’s disease and related disorders

  • Dena A. M. Amer
  • G. Brent Irvine
  • Omar M. A. El-Agnaf
Review

Abstract

An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, α-synuclein (α-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson’s disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of α-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of α-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit α-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.

Keywords

α-Synuclein Neurodegenerative diseases Beta-sheet breaker peptides Drug discovery Amyloid fibrils 

Notes

Acknowledgments

We thank Michael J. Fox Foundation USA and Research and Development Office, Health and Personal Social Services, Northern Ireland, for their generous financial support.

References

  1. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252PubMedGoogle Scholar
  2. Arima K, Ueda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M. (1998) Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 808:93–100PubMedGoogle Scholar
  3. Bodles AM, Guthrie DJS, Greer B, Irvine GB (2001) Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. J Neurochem 78:384–395PubMedGoogle Scholar
  4. Bodles AM, El-Agnaf OMA, Greer B, Guthrie DJS, Irvine GB (2004) Inhibition of fibril formation and toxicity of a fragment of α-synuclein by an N-methylated peptide analogue. Neurosci Lett 359:89–93PubMedGoogle Scholar
  5. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134PubMedGoogle Scholar
  6. Buchman VL, Hunter HJ, Pinon LG, Thompson J, Privalova EM, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18:9335–9341PubMedGoogle Scholar
  7. Bussell RJr, Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778Google Scholar
  8. Campion D, Martin C, Heilig R, Charbonnier F, Moreau V, Flaman JM, Petit JL, Hannequin D, Brice A, Frebourg T (1995) The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer’s disease. Genomics 26:254–247PubMedGoogle Scholar
  9. Cappai R, Leck SL, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19:1377–1379PubMedGoogle Scholar
  10. Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC (2003) A broken α-helix in folded α-synuclein. J Biol Chem 278:15313–15318PubMedGoogle Scholar
  11. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates CSPalpha in preventing neurodegeneration. Cell 123:383–396PubMedGoogle Scholar
  12. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169PubMedGoogle Scholar
  13. Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663PubMedGoogle Scholar
  14. Chen X, de Silva HA, Pettenati MJ, Rao PN, St. George-Hyslop P, Roses AD, Xia Y, Horsburgh K, Ueda K, Saitoh T (1995) The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis. Genomics 26:425–427PubMedGoogle Scholar
  15. Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201PubMedGoogle Scholar
  16. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320PubMedGoogle Scholar
  17. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563PubMedGoogle Scholar
  18. Conway KA, Rochet JC, Bieganski RM, Lansbury PTJ (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349PubMedGoogle Scholar
  19. Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) Synthetic filaments assembled from C-terminally truncated alpha-synuclein. FEBS Lett 436:309–312PubMedGoogle Scholar
  20. da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related Ala-53 to Thr mutant alpha-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275:24065–24069PubMedGoogle Scholar
  21. da Costa CA, Masliah E, Checler F (2003) beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: cross-talk with alpha-synuclein and implication for Parkinson’s disease. J Biol Chem 278:37330–37335PubMedGoogle Scholar
  22. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449PubMedGoogle Scholar
  23. de Rijk MC, Tzourio C, Breteler MMB, Dartigues JF, Amaducci L, Lopez Pousa S, Manubens-Bertran JM, Alperovitch A, Rocca WA (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European Community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:10–15PubMedCrossRefGoogle Scholar
  24. Duda JE, Shah U, Arnold SE, Lee VM, Trojanowski JQ (1999) The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp Neurol 160:515–522PubMedGoogle Scholar
  25. El-Agnaf OMA, Jakes R, Curran MD, Wallace A (1998a) Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson’s disease. FEBS Lett 440:67–70Google Scholar
  26. El-Agnaf OMA, Jakes R, Curran MD, Middleton D, Ingentto R, Bianchi E, Pessi A, Neill D, Wallace A (1998b) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440:71–75Google Scholar
  27. El-Agnaf OMA, Irvine GB (2000) Review: formation and properties of amyloid-like fibrils derived from alpha-synuclein and related proteins. J Struct Biol 130:300–309PubMedGoogle Scholar
  28. El-Agnaf OMA, Mahil DS, Patel BP, Austen BM (2000) Oligomerization and toxicity of beta-amyloid-42 implicated in Alzheimer’s disease. Biochem Biophys Res Commun 273:1003–1007PubMedGoogle Scholar
  29. El-Agnaf OMA, Nagala S, Patel BP, Austen BM (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310:157–168PubMedGoogle Scholar
  30. El-Agnaf OMA, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, Curran MD, Court JA, Mann DMA, Ikeda SI, Cookson MR, Hardy J, Allsop D (2003a) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947Google Scholar
  31. El-Agnaf OM, Walsh DM, Allsop D (2003b) Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol 2:461–462Google Scholar
  32. El-Agnaf OM, Paleologou KE, Greer B, Abogrein AM, King JE, Salem SA, Fullwood NJ, Benson FE, Hewitt R, Ford KJ, Martin FL, Harriott P, Cookson MR, Allsop D (2004) A strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J 18:1315–1317PubMedGoogle Scholar
  33. El-Agnaf OMA, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425PubMedGoogle Scholar
  34. Eliezer D, Kutluay E, Bussell R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073PubMedGoogle Scholar
  35. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22:110–114PubMedGoogle Scholar
  36. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668PubMedGoogle Scholar
  37. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398PubMedGoogle Scholar
  38. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301PubMedGoogle Scholar
  39. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164PubMedGoogle Scholar
  40. Fukuda T, Tanaka J, Watabe K, Numoto RT, Minamitani M (1993) Immunohistochemistry of neuronal inclusions in the cerebral cortex and brain-stem in Lewy body disease. Acta Pathol Jpn 43:545–551PubMedGoogle Scholar
  41. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840PubMedGoogle Scholar
  42. George JM, Jin H, Woods WS, Clayton DF (1995) Characterisation of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372PubMedGoogle Scholar
  43. George JM (2001) The synucleins. Genome Biol 3:1–6Google Scholar
  44. Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem. 274:7619–7622PubMedGoogle Scholar
  45. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989PubMedGoogle Scholar
  46. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501PubMedGoogle Scholar
  47. Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusions. J Biol Chem 277:48984–48992PubMedGoogle Scholar
  48. Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 799:301–306PubMedGoogle Scholar
  49. Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E (2001) beta-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32:213–223PubMedGoogle Scholar
  50. Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E (2002) alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 277:11465–11472PubMedGoogle Scholar
  51. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410PubMedGoogle Scholar
  52. Hughes E, Burke RM, Doig AJ (2000) Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J Biol Chem 275:25109–25115PubMedGoogle Scholar
  53. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F Pollak P, Agid Y, Durr A, Brice A (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171PubMedGoogle Scholar
  54. Iwai A (2000) Properties of NACP/alpha-synuclein and its role in Alzheimer’s disease. Biochim Biophys Acta 1502:95–109PubMedGoogle Scholar
  55. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475PubMedGoogle Scholar
  56. Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M, Yoshiki T (2004) Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma-synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci 95:955–961 PubMedGoogle Scholar
  57. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32PubMedGoogle Scholar
  58. Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G, Joseph BK, Rosen C, Shi YE (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57:759–764PubMedGoogle Scholar
  59. Jia T, Liu YE, Liu J, Shi YE (1999) Stimulation of breast cancer invasion and metastasis by synuclein gamma. Cancer Res 59:742–747PubMedGoogle Scholar
  60. Jiang Y, Liu YE, Goldberg ID, Shi YE (2004) Gamma-synuclein, a novel heat-shock protein-associated chaperone, stimulates ligand-dependent estrogen receptor alpha signaling and mammary tumorigenesis. Cancer Res 64:4539–4546PubMedGoogle Scholar
  61. Jones DH, Martin H, Madrazo J, Robinson KA, Nielsen P, Roseboom PH, Patel Y, Howell SA, Aitken A (1995) Expression and structural analysis of 14–3–3 proteins. J Mol Biol 245:375–384PubMedGoogle Scholar
  62. Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373PubMedGoogle Scholar
  63. Kim TD, Paik SR, Yang CH (2002) Structural and functional implications of C-terminal regions of alpha-synuclein. Biochemistry 41:13782–13790PubMedGoogle Scholar
  64. Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–254502PubMedGoogle Scholar
  65. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108PubMedGoogle Scholar
  66. Lang AE, Lozano AM (1998a) Parkinson’s disease-first of two parts. N Engl J Med 339:1130–1143Google Scholar
  67. Lang AE, Lozano AM (1998b) Parkinson’s disease-second of two parts. N Engl J Med 339:1144–1153Google Scholar
  68. Lavedan C (1998) The synuclein family. Genome Res 8: 871–880PubMedGoogle Scholar
  69. Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 103:106–112PubMedGoogle Scholar
  70. Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L, Dawson TM, Jakala P, Hartmann T, Price DL, Lee MK (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci USA 102:2162–2167PubMedGoogle Scholar
  71. Li Z, Sclabas GM, Peng B, Hess KR, Abbruzzese JL, Evans DB, Chiao PJ (2004) Overexpression of synuclein-gamma in pancreatic adenocarcinoma. Cancer 101:58–65PubMedGoogle Scholar
  72. Liu J, Spence MJ, Zhang YL, Jiang Y, Liu YE, Shi YE (2000) Transcriptional suppression of synuclein gamma (SNCG) in human breast cancer cells by the growth inhibitory cytokine oncostatin M. Breast Cancer Res Treat 62:99–107PubMedGoogle Scholar
  73. Lücking CB, Brice A (2000) Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci 57:1894–1908PubMedGoogle Scholar
  74. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815PubMedGoogle Scholar
  75. Martin FL, Williamson SJ, Paleologou KE, Hewitt R, El-Agnaf OM, Allsop D (2003) Fe(II)-induced DNA damage in alpha-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the Comet assay. J Neurochem 87:620–630PubMedGoogle Scholar
  76. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269PubMedGoogle Scholar
  77. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98:12245–12250PubMedGoogle Scholar
  78. Matsushita M, Tomizawa K, Moriwaki A, Li ST, Terada H, Matsui H (2001) A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J Neurosci 21:6000–6007PubMedGoogle Scholar
  79. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325PubMedGoogle Scholar
  80. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220PubMedGoogle Scholar
  81. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4:1449–1452PubMedGoogle Scholar
  82. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem. 274:9843–9846PubMedGoogle Scholar
  83. Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S, Fujiwara H, Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathiesGoogle Scholar
  84. Ninkina NN, Alimova-Kost MV, Paterson JW, Delaney L, Cohen BB, Imreh S, Gnuchev NV, Davies AM, Buchman VL (1998) Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet 7:1417–1424PubMedGoogle Scholar
  85. Ohtake H, Limprasert P, Fan Y, Onodera O, Kakita A, Takahashi H, Bonner LT, Tsuang DW, Murray IV, Lee VM, Trojanowski JQ, Ishikawa A, Idezuka J, Murata M, Toda T, Bird TD, Leverenz JB, Tsuji S, La Spada AR (2004). Beta-synuclein gene alterations in dementia with Lewy bodies. Neurology 63:805–811PubMedGoogle Scholar
  86. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physiological and functional homology with 14–3–3 proteins. J Neurosci 19:5782–5791PubMedGoogle Scholar
  87. Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem J 340:821–828PubMedGoogle Scholar
  88. Paik SR, Shin HJ, Lee JH (2000) Metal-catalyzed oxidation of alpha-synuclein in the presence of Copper(II) and hydrogen peroxide. Arch Biochem Biophys 378:269–277PubMedGoogle Scholar
  89. Paleologou KE, Irvine GB, El-Agnaf OMA (2005) Αlpha-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem Soc Trans 33:1106–1110PubMedGoogle Scholar
  90. Pals P, Lincoln S, Manning J, Heckman M, Skipper L, Hulihan M, Van der Broek M, De Pooter T, Cras P, Crook J, Van Broeckhoven C, Farrer MJ (2004) Alpha-synuclein promoter confers susceptibility to Parkinson’s disease. Ann Neurol 56:591–595PubMedGoogle Scholar
  91. Park SM, Jung HY, Kim TD, Park JH, Yang CH, Kim J (2002) Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-synuclein, a molecular chaperone. J Biol Chem 277:28512–28520PubMedGoogle Scholar
  92. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio D, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedGoogle Scholar
  93. Rosner M, Hengstschlager M (2006) 14-3-3 proteins are involved in the regulation of mammalian cell proliferation. Amino Acids 30:105–109PubMedGoogle Scholar
  94. Roy S, Wolman L (1969) Ultrastructural observations in Parkinsonism. J Pathol 99:39–44PubMedGoogle Scholar
  95. Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, Park CH, Kim S, Kim EM, Lee SH, Lee S, Suh SW, Suh YH (2002) Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16:1826–1828PubMedGoogle Scholar
  96. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668PubMedGoogle Scholar
  97. Sian J, Dexter DT, Lees A.J Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36:356–361PubMedGoogle Scholar
  98. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMedGoogle Scholar
  99. Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T, Ross CA (2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 25:5544–5552PubMedGoogle Scholar
  100. Sofic E, Lange KW, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130PubMedGoogle Scholar
  101. Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun 226:672–680PubMedGoogle Scholar
  102. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826PubMedGoogle Scholar
  103. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000a) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implications of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349Google Scholar
  104. Souza JM, Giasson BI, Lee VM, Ischiropoulos H (2000b) Chaperone-like activity of synucleins. FEBS Lett 474:116–119Google Scholar
  105. Spillantini MG, Divane A, Goedert M (1995) Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics 27:379–381PubMedGoogle Scholar
  106. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473PubMedGoogle Scholar
  107. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560PubMedGoogle Scholar
  108. Stefanova N, Seppi K, Scherfler C, Puschban Z, Wenning GK (2000) Depression in alpha-synucleinopathies: prevalence, pathophysiology and treatment. J Neural Transm 60: 335–343Google Scholar
  109. Surguchov A, McMahan B, Masliah E, Surgucheva I (2001) Synucleins in ocular tissues. J Neurosci Res 65:68–77PubMedGoogle Scholar
  110. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791PubMedGoogle Scholar
  111. Tretiakoff MC (1919) Contribution a l’etudie de l’anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonus musculaire et de la maladie de Parkinson (thesis), ParisGoogle Scholar
  112. Turnbull S, Tabner BJ, El-Agnaf OMA, Moore S, Davies Y, Allsop D (2001) Alpha-synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med 30:1163–1170PubMedGoogle Scholar
  113. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744PubMedGoogle Scholar
  114. Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978PubMedGoogle Scholar
  115. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017PubMedGoogle Scholar
  116. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715PubMedGoogle Scholar
  117. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008PubMedGoogle Scholar
  118. Windisch M, Hutter-Paier B, Rockenstein E, Hashimoto M, Mallory M, Masliah E (2002). Development of a new treatment for Alzheimer’s disease and Parkinson’s disease using anti-aggregatory beta-synuclein-derived peptides. J Mol Neurosci 19:63–69PubMedGoogle Scholar
  119. Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–19512PubMedGoogle Scholar
  120. Xia Y, Saitoh T, Ueda K, Tanaka S, Chen X, Hashimoto M, Hsu L, Conrad C, Sundsmo M, Yoshimoto M, Thal L, Katzman R, Masliah E (2001) Characterization of the human alpha-synuclein gene: genomic structure, transcription start site, promoter region and polymorphisms. J Alzheimers Dis 3:485–494PubMedGoogle Scholar
  121. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedGoogle Scholar
  122. Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalised mesencephalon-derived cells. Brain Res 866:33–43PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dena A. M. Amer
    • 1
  • G. Brent Irvine
    • 2
  • Omar M. A. El-Agnaf
    • 1
  1. 1.Department of Biochemistry, Faculty of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  2. 2.Division of Psychiatry and Neuroscience, School of Medicine and DentistryQueen’s University of BelfastBelfastUK

Personalised recommendations