Experimental Brain Research

, Volume 174, Issue 2, pp 199–209 | Cite as

Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability

  • S. Koeneke
  • K. Lutz
  • U. Herwig
  • U. Ziemann
  • L. Jäncke
Research Article


There is evidence of a strong capacity for functional and structural reorganization in the human motor system. However, past research has focused mainly on complex movement sequences over rather short training durations. In this study we investigated changes in corticospinal excitability associated with longer training of elementary, maximum-speed tapping movements. All participating subjects were consistent right-handers and were trained using either the right (experiment 1) or the left thumb (experiment 2). Transcranial magnetic stimulation was applied to obtain motor evoked potentials (MEPs) from the abductor pollicis brevis (APB) muscle of the right and the left hand before and after training. As a result of training, a significant increase was observed in tapping speed accompanied by increased MEPs, recorded from the trained APB muscle, following contralateral M1 stimulation. In the case of subdominant-hand training we additionally demonstrate increased MEP amplitudes evoked at the right APB (untrained hand) in the first training week. Enhanced corticospinal excitability associated with practice of elementary movements may constitute a necessary precursor for inducing plastic changes within the motor system. The involvement of the ipsilateral left M1 likely reflects the predominant role of the left M1 in the general control (modification) of simple motor parameters in right-handed subjects.


Neural plasticity Transcranial magnetic stimulation Motor cortex Human Handedness Practice 



Abductor digiti minimi


Abductor pollicis brevis


Compound muscle action potential






Primary motor cortex


Motor evoked potential


Resting motor threshold


Transcranial magnetic stimulation



This work was supported by an NCCR-grant to L.J. (Swiss National Foundation, Neural plasticity and repair).


  1. Agnew JA, Zeffiro TA, Eden GF (2004) Left hemisphere specialization for the control of voluntary movement rate. Neuroimage 22(1):289–303CrossRefPubMedGoogle Scholar
  2. Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond MC, Kollias SS (2002) Somatotopy in the ipsilateral primary motor cortex. Neuroreport 13(16):2065–2070CrossRefPubMedGoogle Scholar
  3. Amunts K, Schlaug G, Jäncke L, Steinmetz H, Schleicher A, Zilles K (1997) Hand skills covary with the size of motor cortex: a macrostructural adaptation. Hum Brain Mapp 5:206–215CrossRefGoogle Scholar
  4. Andres FG, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16(6):520–527CrossRefPubMedGoogle Scholar
  5. Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61(3):303–321PubMedGoogle Scholar
  6. Annett M, Hudson PT, Turner A (1974) The reliability of differences between the hands in motor skill. Neuropsychologia 12(4):527–531CrossRefPubMedGoogle Scholar
  7. Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4(6):590–600PubMedCrossRefGoogle Scholar
  8. Baraldi P, Porro CA, Serafini M, Pagnoni G, Murari C, Corazza R, Nichelli P (1999) Bilateral representation of sequential finger movements in human cortical areas. Neurosci Lett 269(2):95–98CrossRefPubMedGoogle Scholar
  9. Beltramello A, Cerini R, Puppini G, El-Dalati G, Viola S, Martone E, Cordopatri D, Manfredi M, Aglioti S, Tassinari G (1998) Motor representation of the hand in the human cortex: an f-MRI study with a conventional 1.5 T clinical unit. Ital J Neurol Sci 19(5):277–284CrossRefPubMedGoogle Scholar
  10. Caramia MD, Palmieri MG, Giacomini P, Iani C, Dally L, Silvestrini M (2000) Ipsilateral activation of the unaffected motor cortex in patients with hemiparetic stroke. Clin Neurophysiol 111(11):1990–1996CrossRefPubMedGoogle Scholar
  11. Carey LM, Abbott DF, Egan GF, Tochon-Danguy HJ, Donnan GA (2000) The functional neuroanatomy and long-term reproducibility of brain activation associated with a simple finger tapping task in older healthy volunteers: a serial PET study. Neuroimage 11(2):124–144CrossRefPubMedGoogle Scholar
  12. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121(Pt 2):253–264CrossRefPubMedGoogle Scholar
  13. Chen R, Cohen LG, Hallett M (1997a) Role of the ipsilateral motor cortex in voluntary movement. Can J Neurol Sci 24(4):284–291Google Scholar
  14. Chen R, Gerloff C, Hallett M, Cohen LG (1997b) Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol 41(2):247–254CrossRefGoogle Scholar
  15. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79(2):1117–1123PubMedGoogle Scholar
  16. Classen J, Liepert J, Hallett M, Cohen L (1999) Plasticity of movement representation in the human motor cortex. Electroencephalogr Clin Neurophysiol Suppl 51:162–173PubMedGoogle Scholar
  17. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  18. Cohen LG, Brasil-Neto JP, Pascual-Leone A, Hallett M (1993) Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. Adv Neurol 63:187–200PubMedGoogle Scholar
  19. Cohen LG, Ziemann U, Chen R, Classen J, Hallett M, Gerloff C, Butefisch C (1998) Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol 15(4):305–324CrossRefPubMedGoogle Scholar
  20. Cramer SC, Finklestein SP, Schaechter JD, Bush G, Rosen BR (1999) Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements. J Neurophysiol 81(1):383–387PubMedGoogle Scholar
  21. Dejardin S, Dubois S, Bodart JM, Schiltz C, Delinte A, Michel C, Roucoux A, Crommelinck M (1998) PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern. Eur J Neurosci 10(7):2328–2336CrossRefPubMedGoogle Scholar
  22. Donoghue JP, Suner S, Sanes JN (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res 79(3):492–503CrossRefPubMedGoogle Scholar
  23. Facchini S, Romani M, Tinazzi M, Aglioti SM (2002) Time-related changes of excitability of the human motor system contingent upon immobilisation of the ring and little fingers. Clin Neurophysiol 113(3):367–375CrossRefPubMedGoogle Scholar
  24. Garry MI, Kamen G, Nordstrom MA (2004) Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. J Neurophysiol 91(4):1570–1578CrossRefPubMedGoogle Scholar
  25. Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowiak RS, Phelps ME (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 12(7):2542–2548PubMedGoogle Scholar
  26. Hallett M (1995) The plastic brain. Ann Neurol 38(1):4–5CrossRefPubMedGoogle Scholar
  27. Halsband U (1992) Left hemisphere preponderance in trajectorial learning. Neuroreport 3(5):397–400PubMedCrossRefGoogle Scholar
  28. Hammond G, Bolton Y, Plant Y, Manning J (1988) Hand asymmetries in interresponse intervals during rapid repetitive finger tapping. J Mot Behav 20(1):67–71PubMedGoogle Scholar
  29. Harrington DL, Rao SM, Haaland KY, Bobholz JA, Mayer AR, Binderx JR, Cox RW (2000) Specialized neural systems underlying representations of sequential movements. J Cogn Neurosci 12(1):56–77CrossRefPubMedGoogle Scholar
  30. Haslinger B, Erhard P, Weilke F, Ceballos-Baumann AO, Bartenstein P, Grafin von EH, Schwaiger M, Conrad B, Boecker H (2002) The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study. Brain Res Cogn Brain Res 13(2):159–168CrossRefPubMedGoogle Scholar
  31. Haslinger B, Erhard P, Altenmuller E, Hennenlotter A, Schwaiger M, Grafin von EH, Rummeny E, Conrad B, Ceballos-Baumann AO (2004) Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum Brain Mapp 22(3):206–215CrossRefPubMedGoogle Scholar
  32. Hayashi S, Hasegawa Y, Kasai T (2002) Transcranial magnetic stimulation study of plastic changes of human motor cortex after repetitive simple muscle contractions. Percept Mot Skills 95(3 Pt 1):699–705CrossRefPubMedGoogle Scholar
  33. Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120(Pt 1):123–140CrossRefPubMedGoogle Scholar
  34. Hess CW, Mills KR, Murray NM (1987) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol 388:397–419PubMedGoogle Scholar
  35. Hlustik P, Solodkin A, Noll DC, Small SL (2004) Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 21(3):180–191PubMedCrossRefGoogle Scholar
  36. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  37. Huang MX, Harrington DL, Paulson KM, Weisend MP, Lee RR (2004) Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Hum Brain Mapp 23(1):26–39CrossRefPubMedGoogle Scholar
  38. Humphrey DR (1972) Relating motor cortex spike trains to measures of motor performance. Brain Res 40(1):7–18CrossRefPubMedGoogle Scholar
  39. Iacoboni M, Woods RP, Mazziotta JC (1996) Brain–behavior relationships: evidence from practice effects in spatial stimulus–response compatibility. J Neurophysiol 76(1):321–331PubMedGoogle Scholar
  40. Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251(4996):944–947PubMedCrossRefGoogle Scholar
  41. Jäncke L (1996) The hand performance test with a modified time limit instruction enables the examination of hand performance asymmetries in adults. Percept Mot Skills 82(3 Pt 1):735–738PubMedGoogle Scholar
  42. Jäncke L, Peters M, Schlaug G, Posse S, Steinmetz H, Muller-Gartner H (1998) Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Brain Res Cogn Brain Res 6(4):279–284CrossRefPubMedGoogle Scholar
  43. Jäncke L, Specht K, Mirzazade S, Peters M (1999) The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage 9(5):497–507CrossRefPubMedGoogle Scholar
  44. Jäncke L, Himmelbach M, Shah NJ, Zilles K (2000a) The effect of switching between sequential and repetitive movements on cortical activation. Neuroimage 12(5):528–537CrossRefGoogle Scholar
  45. Jäncke L, Shah NJ, Peters M (2000b) Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res Cogn Brain Res 10(1–2):177–183CrossRefGoogle Scholar
  46. Jäncke L, Steinmetz H, Benilow S, Ziemann U (2004) Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res 155(2):196–203CrossRefPubMedGoogle Scholar
  47. Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377(6545):155–158CrossRefPubMedGoogle Scholar
  48. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 95(3):861–868PubMedCrossRefGoogle Scholar
  49. Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, Fukuda H (1993) Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res 623(1):33–40CrossRefPubMedGoogle Scholar
  50. Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements—a PET study. Eur J Neurosci 10(7):2254–2260CrossRefPubMedGoogle Scholar
  51. Keselman HJ, Algina J, Kowalchuk RK (2001) The analysis of repeated measures designs: a review. Br J Math Stat Psychol 54(Pt 1):1–20CrossRefPubMedGoogle Scholar
  52. Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89(6):415–423CrossRefPubMedGoogle Scholar
  53. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261(5121):615–617PubMedMathSciNetCrossRefGoogle Scholar
  54. Kobayashi M, Hutchinson S, Schlaug G, Pascual-Leone A (2003) Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. Neuroimage 20(4):2259–2270CrossRefPubMedGoogle Scholar
  55. Koeneke S, Lutz K, Wustenberg T, Jäncke L (2004) Long-term training affects cerebellar processing in skilled keyboard players. Neuroreport 15(8):1279–1282PubMedGoogle Scholar
  56. Lotze M, Scheler G, Tan HR, Braun C, Birbaumer N (2003) The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20(3):1817–1829CrossRefPubMedGoogle Scholar
  57. Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21(5):592–607CrossRefPubMedGoogle Scholar
  58. Lutz K, Koeneke S, Wustenberg T, Jancke L (2005) Asymmetry of cortical activation during maximum and convenient tapping speed. Neurosci Lett 373(1):61–66CrossRefPubMedGoogle Scholar
  59. Morgen K, Kadom N, Sawaki L, Tessitore A, Ohayon J, Frank J, McFarland H, Martin R, Cohen LG (2004) Kinematic specificity of cortical reorganization associated with motor training. Neuroimage 21(3):1182–1187CrossRefPubMedGoogle Scholar
  60. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136(4):431–438CrossRefPubMedGoogle Scholar
  61. Munte TF, Altenmuller E, Jäncke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3(6):473–478CrossRefPubMedGoogle Scholar
  62. Nyberg L, Eriksson J, Larsson A, Marklund P (2006) Learning by doing versus learning by thinking: an fMRI study of motor and mental training. Neuropsychologia 44(5):711–717CrossRefPubMedGoogle Scholar
  63. O’Brien RG, Kaiser MK (1985) MANOVA method for analyzing repeated measures designs: an extensive primer. Psychol Bull 97(2):316–333CrossRefPubMedGoogle Scholar
  64. Park SW, Butler AJ, Cavalheiro V, Alberts JL, Wolf SL (2004) Changes in serial optical topography and TMS during task performance after constraint-induced movement therapy in stroke: a case study. Neurorehabil Neural Repair 18(2):95–105CrossRefPubMedGoogle Scholar
  65. Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263(5151):1287–1289PubMedCrossRefGoogle Scholar
  66. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74(3):1037–1045PubMedGoogle Scholar
  67. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401CrossRefPubMedGoogle Scholar
  68. Peters M (1976) Prolonged practice of a simple motor task by preferred and nonpreffered hands. Percept Mot Skills 42(43):447–450PubMedGoogle Scholar
  69. Rajah M, Hussey D, Houle S, Kapur S, McIntosh AR (1998) Task-independent effect of time on rCBF. Neuroimage 7(4 Pt 1):314–325CrossRefPubMedGoogle Scholar
  70. Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105(5):340–344CrossRefPubMedGoogle Scholar
  71. Rosnow RL, Rosenthal R (1996) Computing contrasts, effect sizes, and counternulls on other people’s published data: general procedures for research consumers. Psychol Methods 1:331–340CrossRefGoogle Scholar
  72. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92CrossRefPubMedGoogle Scholar
  73. Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16(8):2691–2700PubMedGoogle Scholar
  74. Schulze K, Luders E, Jäncke L (2002) Intermanual transfer in a simple motor task. Cortex 38(5):805–815PubMedCrossRefGoogle Scholar
  75. Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296(5575):2043–2046CrossRefPubMedGoogle Scholar
  76. Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277(5327):821–825CrossRefPubMedGoogle Scholar
  77. Steingruber HJ (1971) Measuring of laterality. Z Exp Angew Psychol 18(2):337–357PubMedGoogle Scholar
  78. Toma K, Mima T, Matsuoka T, Gerloff C, Ohnishi T, Koshy B, Andres F, Hallett M (2002) Movement rate effect on activation and functional coupling of motor cortical areas. J Neurophysiol 88(6):3377–3385PubMedCrossRefGoogle Scholar
  79. Tracy JI, Faro SS, Mohammed F, Pinus A, Christensen H, Burkland D (2001) A comparison of ‘Early’ and ‘Late’ stage brain activation during brief practice of a simple motor task. Brain Res Cogn Brain Res 10(3):303–316CrossRefPubMedGoogle Scholar
  80. Ungerleider LG, Doyon J, Karni A (2002) Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 78(3):553–564CrossRefPubMedGoogle Scholar
  81. Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB (2005) Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol 93(3):1209–1222CrossRefPubMedGoogle Scholar
  82. Yetkin FZ, McAuliffe TL, Cox R, Haughton VM (1996) Test–retest precision of functional MR in sensory and motor task activation. AJNR Am J Neuroradiol 17(1):95–98PubMedGoogle Scholar
  83. Zanette G, Manganotti P, Fiaschi A, Tamburin S (2004) Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol 115(6):1264–1275CrossRefPubMedGoogle Scholar
  84. Ziemann U, Steinhoff BJ, Tergau F, Paulus W (1998) Transcranial magnetic stimulation: its current role in epilepsy research. Epilepsy Res 30(1):11–30CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Koeneke
    • 1
  • K. Lutz
    • 1
  • U. Herwig
    • 2
  • U. Ziemann
    • 3
  • L. Jäncke
    • 1
  1. 1.Division Neuropsychology, Institute of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Department of PsychiatryUniversity of ZurichZurichSwitzerland
  3. 3.Motor Cortex Laboratory, Department of NeurologyUniversity of Frankfurt a. MainFrankfurtGermany

Personalised recommendations