Experimental Brain Research

, Volume 166, Issue 3–4, pp 559–571 | Cite as

Functional imaging of human crossmodal identification and object recognition

  • A. Amedi
  • K. von Kriegstein
  • N. M. van Atteveldt
  • M. S. Beauchamp
  • M. J. Naumer


The perception of objects is a cognitive function of prime importance. In everyday life, object perception benefits from the coordinated interplay of vision, audition, and touch. The different sensory modalities provide both complementary and redundant information about objects, which may improve recognition speed and accuracy in many circumstances. We review crossmodal studies of object recognition in humans that mainly employed functional magnetic resonance imaging (fMRI). These studies show that visual, tactile, and auditory information about objects can activate cortical association areas that were once believed to be modality-specific. Processing converges either in multisensory zones or via direct crossmodal interaction of modality-specific cortices without relay through multisensory regions. We integrate these findings with existing theories about semantic processing and propose a general mechanism for crossmodal object recognition: The recruitment and location of multisensory convergence zones varies depending on the information content and the dominant modality.


Object recognition Crossmodal Audio-visual Visuo-tactile Multisensory Functional magnetic resonance imaging (fMRI) 



This research was funded by a Horowitz Foundation fellowship (A.A.), the Bundesministerium für Bildung und Forschung (BMBF; K.v.K., M.J.N.), the Volkswagenstiftung (K.v.K.), and the Max Planck Society (M.J.N). The authors thank Nikolas Francis, Axel Kohler (for help with the figures), Lotfi Merabet, Wolf Singer, Lars Muckli, and three anonymous reviewers (for their helpful comments on earlier versions of this paper). Reprint requests and remarks should be addressed to Marcus Johannes Naumer (H.J.Naumer@med.uni-frankfurt.de) or to Amir Amedi (aamedi@bidmc.harvard.edu).


  1. Adams RB, Janata P (2002) A comparison of neural circuits underlying auditory and visual object categorization. Neuroimage 16:361–377Google Scholar
  2. Amedi A (2004) Multisensory object-related processing in the visual cortex of sighted and its reversed hierarchical organization in blind humans. In: Presented at the 5th international multisensory research forum in Sitges, Spain, Abstract No. 149Google Scholar
  3. Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330Google Scholar
  4. Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212Google Scholar
  5. Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330Google Scholar
  6. Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408Google Scholar
  7. van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282Google Scholar
  8. Banati RB, Goerres GW, Tjoa C, Aggleton JP, Grasby P (2000) The functional anatomy of visual-tactile integration in man: a study using positron emission tomography. Neuropsychologia 38:115–124Google Scholar
  9. Bartels A, Zeki S (2004a) Functional brain mapping during free viewing of natural scenes. Hum Brain Mapp 21:75–85Google Scholar
  10. Bartels A, Zeki S (2004b) The chronoarchitecture of the human brain—natural viewing conditions reveal a time-based anatomy of the brain. Neuroimage 22:419–433Google Scholar
  11. Beauchamp MS, Lee KE, Haxby JV, Martin A (2002) Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34:149–159Google Scholar
  12. Beauchamp MS, Lee KE, Argall BD, Martin A (2004) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–823Google Scholar
  13. Belin P, Zatorre RJ (2000) ‘What’, ‘where’, and ‘how’ in auditory cortex. Nat Neurosci 3:965–966Google Scholar
  14. Belin P, Zatorre RJ (2003) Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport 14:2105–2109Google Scholar
  15. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312Google Scholar
  16. Bernstein LE, Auer ET Jr, Moore JK, Ponton CW, Don M, Singh M (2002) Visual speech perception without primary auditory cortex activation. Neuroreport 13:311–315Google Scholar
  17. Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nat Neurosci 7:295–301Google Scholar
  18. Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286Google Scholar
  19. Bodegard A, Geyer S, Grefkes C, Zilles K, Roland PE (2001) Hierarchical processing of tactile shape in the human brain. Neuron 31:317–328Google Scholar
  20. Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge, MAGoogle Scholar
  21. Burton AM, Bruce V, Johnston RA (1990) Understanding face recognition with an interactive activation model. Br J Psychol 81(Pt 3):361–380Google Scholar
  22. Callan DE, Callan AM, Kroos C, Vatikiotis-Bateson E (2001) Multimodal contribution to speech perception revealed by independent component analysis: a single-sweep EEG case study. Brain Res Cogn Brain Res 10:349–353Google Scholar
  23. Callan DE, Jones JA, Munhall K, Callan AM, Kroos C, Vatikiotis-Bateson E (2003) Neural processes underlying perceptual enhancement by visual speech gestures. Neuroreport 14:2213–2218Google Scholar
  24. Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123Google Scholar
  25. Calvert GA, Campbell R (2003) Reading speech from still and moving faces: the neural substrates of visible speech. J Cogn Neurosci 15:57–70Google Scholar
  26. Calvert GA, Lewis JW (2004) Hemodynamic studies of audiovisual interactions. In: Calvert G, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, MA, pp 483–502Google Scholar
  27. Calvert GA, Bullmore ET, Brammer MJ, Campbell R, Williams SC, McGuire PK, Woodruff PW, Iversen SD, David AS (1997) Activation of auditory cortex during silent lipreading. Science 276:593–596Google Scholar
  28. Calvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS (1999) Response amplification in sensory-specific cortices during crossmodal binding. Neuroreport 10:2619–2623Google Scholar
  29. Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10:649–657Google Scholar
  30. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107Google Scholar
  31. Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–49Google Scholar
  32. De Gelder B, Bertelson P (2003) Multisensory integration, perception and ecological validity. Trends Cogn Sci 7:460–467Google Scholar
  33. Deibert E, Kraut M, Kremen S, Hart J Jr (1999) Neural pathways in tactile object recognition. Neurology 52:1413–1417Google Scholar
  34. Dolan RJ, Morris JS, de Gelder B (2001) Crossmodal binding of fear in voice and face. Proc Natl Acad Sci USA 98:10006–10010Google Scholar
  35. Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473Google Scholar
  36. Easton RD, Srinivas K, Greene AJ (1997) Do vision and haptics share common representations? Implicit and explicit memory within and between modalities. J Exp Psychol Learn Mem Cogn 23:153–163Google Scholar
  37. Ellis HD, Jones DM, Mosdell N (1997) Intra- and inter-modal repetition priming of familiar faces and voices. Br J Psychol 88:143–156Google Scholar
  38. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601Google Scholar
  39. Ernst M, Bülthoff H (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169Google Scholar
  40. Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22:5749–5759Google Scholar
  41. Feinberg TE, Rothi LJ, Heilman KM (1986) Multimodal agnosia after unilateral left hemisphere lesion. Neurology 36:864–867Google Scholar
  42. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47Google Scholar
  43. Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3:191–197Google Scholar
  44. Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504Google Scholar
  45. Gleitman LR, Rozin P (1977) The structure and acquisition of reading I: relations between orthographies and the structure of language. In: Reber A, Scarborough D (eds) Towards a psychology of reading: the proceedings of the CUNY conferences. Lawrence Erlbaum Associates, Hillsdale, NJGoogle Scholar
  46. Goodale MA, Meenan JP, Bulthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610Google Scholar
  47. Gorno-Tempini ML, Price CJ (2001) Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain 124:2087–2097Google Scholar
  48. Gorno-Tempini ML, Price CJ, Josephs O, Vandenberghe R, Cappa SF, Kapur N, Frackowiak RS, Tempini ML (1998) The neural systems sustaining face and proper-name processing. Brain 121(Pt 11):2103–2118Google Scholar
  49. Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35:173–184Google Scholar
  50. Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends Neurosci 25:348–353Google Scholar
  51. Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:159–166Google Scholar
  52. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677Google Scholar
  53. Hadjikhani N, Roland PE (1998) Cross-modal transfer of information between the tactile and the visual representations in the human brain: a positron emission tomographic study. J Neurosci 18:1072–1084Google Scholar
  54. Hashimoto R, Sakai KL (2004) Learning letters in adulthood: direct visualization of cortical plasticity for forming a new link between orthography and phonology. Neuron 42:311–322Google Scholar
  55. Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041Google Scholar
  56. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303:1634–1640Google Scholar
  57. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430Google Scholar
  58. Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3:80–84Google Scholar
  59. Iwamura Y (1998) Hierarchical somatosensory processing. Curr Opin Neurobiol 8:522–528Google Scholar
  60. James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40:1706–1714Google Scholar
  61. Jäncke L, Wüstenberg T, Scheich H, Heinze HJ (2002) Phonetic perception and the temporal cortex. Neuroimage 15:733–746Google Scholar
  62. Kaas JH, Hackett TA (1999) ‘What’ and ‘where’ processing in auditory cortex. Nat Neurosci 2:1045–1047Google Scholar
  63. Kamachi M, Hill H, Lander K, Vatikiotis-Bateson E (2003) “Putting the face to the voice”: matching identity across modality. Curr Biol 13:1709–1714Google Scholar
  64. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311Google Scholar
  65. Kilgour AR, Lederman SJ (2002) Face recognition by hand. Percept Psychophys 64:339–352Google Scholar
  66. Kilgour AR, de Gelder B, Lederman SJ (2004) Haptic face recognition and prosopagnosia. Neuropsychologia 42:707–712Google Scholar
  67. Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci 2:635–642Google Scholar
  68. von Kriegstein K, Giraud AL (2004) Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage 22:948–955Google Scholar
  69. von Kriegstein K, Eger E, Kleinschmidt A, Giraud AL (2003) Modulation of neural responses to speech by directing attention to voices or verbal content. Brain Res Cogn Brain Res 17:48–55Google Scholar
  70. von Kriegstein K, Kleinschmidt A, Sterzer P, Giraud AL (in press) Interaction of face and voice areas during speaker recognition. J Cog NeurosciGoogle Scholar
  71. Kuhl PK, Meltzoff AN (1982) The bimodal perception of speech in infancy. Science 218:1138–1141Google Scholar
  72. Laurienti PJ, Wallace MT, Maldjian JA, Susi CM, Stein BE, Burdette JH (2003) Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices. Hum Brain Mapp 19:213–223Google Scholar
  73. Leveroni CL, Seidenberg M, Mayer AR, Mead LA, Binder JR, Rao SM (2000) Neural systems underlying the recognition of familiar and newly learned faces. J Neurosci 20:878–886Google Scholar
  74. Lewis JW, Wightman FL, Brefczynski JA, Phinney RE, Binder JR, DeYoe EA (2004) Human brain regions involved in recognizing environmental sounds. Cereb Cortex AoPGoogle Scholar
  75. Liberman AM (1992) The relation of speech to reading and writing. In: Frost R, Katz L (eds) Orthography, phonology, morphology and meaning. Elsevier Science Publishers BV, AmsterdamGoogle Scholar
  76. Macaluso E, George N, Dolan R, Spence C, Driver J (2004) Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage 21:725–732Google Scholar
  77. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139Google Scholar
  78. Martin A, Chao LL (2001) Semantic memory and the brain: structure and processes. Curr Opin Neurobiol 11:194–201Google Scholar
  79. McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299Google Scholar
  80. McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748Google Scholar
  81. Merabet L, Thut G, Murray B, Andrews J, Hsiao S, Pascual-Leone A (2004) Feeling by sight or seeing by touch?. Neuron 42:173–179Google Scholar
  82. Mesulam MM (1998) From sensation to cognition. Brain 121(Pt 6):1013–1052Google Scholar
  83. Mishkin M (1979) Analogous neural models for tactual and visual learning. Neuropsychologia 17(2):139–151Google Scholar
  84. Molholm S, Ritter W, Javitt DC, Foxe JJ (2004) Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study. Cereb Cortex 14:452–465Google Scholar
  85. Morin P, Rivrain Y, Eustache F, Lambert J, Courtheoux P (1984) Visual and tactile agnosia. Rev Neurol (Paris) 140:271–277Google Scholar
  86. Munhall KG, Tohkura Y (1998) Audiovisual gating and the time course of speech perception. J Acoust Soc Am 104:530–539Google Scholar
  87. Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Gonzalez AS, Schnider A (2004) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. Neuroimage 21:125–135Google Scholar
  88. Nakamura K, Kawashima R, Sato N, Nakamura A, Sugiura M, Kato T, Hatano K, Ito K, Fukuda H, Schormann T, Zilles K (2000) Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. Brain 123:1903–1912Google Scholar
  89. Naumer MJ, Singer W, Muckli L (2002a) Audio-visual perception of natural objects. OHBM Abstract#15600Google Scholar
  90. Naumer MJ, Wibral M, Singer W, Muckli L (2002b) FMRI-studies of category-specific audio-visual processing—visual cortex. IMRF Abstract#25Google Scholar
  91. Naumer MJ, Petkova V, Havenith MN, Kohler A, Singer W, Muckli L (2004) Paying attention to multisensory objects. OHBM Abstract#TH99Google Scholar
  92. Newell FN (2004) Cross-modal object recognition. In: Calvert G, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, MA, pp 123–139Google Scholar
  93. Ohtake H, Fujii T, Yamadori A, Fujimori M, Hayakawa Y, Suzuki K (2001) The influence of misnaming on object recognition: a case of multimodal agnosia. Cortex 37:175–186Google Scholar
  94. Olson IR, Gatenby JC, Gore JC (2002) A comparison of bound and unbound audio-visual information processing in the human cerebral cortex. Brain Res Cogn Brain Res 14:129–138Google Scholar
  95. O’Sullivan BT, Roland PE, Kawashima R (1994) A PET study of somatosensory discrimination in man. Microgeometry versus macrogeometry. Eur J Neurosci 6:137–148Google Scholar
  96. Pascual-Leone A, Hamilton R (2001) The metamodal organization of the brain. Prog Brain Res 134:427–445Google Scholar
  97. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237Google Scholar
  98. Paulesu E, Perani D, Blasi V, Silani G, Borghese NA, De Giovanni U, Sensolo S, Fazio F (2003) A functional-anatomical model for lipreading. J Neurophysiol 90:2005–2013Google Scholar
  99. Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WH, Cohen L, Guazzelli M, Haxby JV (2004) Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci USA 101:5658–5663Google Scholar
  100. Polk TA, Stallcup M, Aguirre GK, Alsop DC, D’Esposito M, Detre JA, Farah MJ (2002) Neural specialization for letter recognition. J Cogn Neurosci 14:145–159Google Scholar
  101. Polster MR, Rose SB (1998) Disorders of auditory processing: evidence for modularity in audition. Cortex 34:47–65Google Scholar
  102. Pons TP, Garraghty PE, Friedman DP, Mishkin M (1987) Physiological evidence for serial processing in somatosensory cortex. Science 237:417–420Google Scholar
  103. Prather SC, Votaw JR, Sathian K (2004) Task-specific recruitment of dorsal and ventral visual areas during tactile perception. Neuropsychologia 42:1079–1087Google Scholar
  104. Raij T, Uutela K, Hari R (2000) Audiovisual integration of letters in the human brain. Neuron 28:617–625Google Scholar
  105. Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806Google Scholar
  106. Reales JM, Ballesteros S (1999) Implicit and explicit memory for visual and haptic objects: cross-modal priming depends on structural descriptions. J Exp Psychol Learn Mem Cog 25:644–663Google Scholar
  107. Reed CL, Caselli RJ (1994) The nature of tactile agnosia: a case study. Neuropsychologia 32:527–539Google Scholar
  108. Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21:236–246Google Scholar
  109. Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol 50(1–2):19–26Google Scholar
  110. Roland PE, O’Sullivan B, Kawashima R (1998) Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci USA 95:3295–3300Google Scholar
  111. Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136Google Scholar
  112. Saito DN, Okada T, Morita Y, Yonekura Y, Sadato N (2003) Tactile-visual cross-modal shape matching: a functional MRI study. Brain Res Cogn Brain Res 17:14–25Google Scholar
  113. Sathian K, Zangaladze A, Hoffman JM, Grafton ST (1997) Feeling with the mind’s eye. Neuroreport 8:3877–3881Google Scholar
  114. Schroeder CE, Smiley J, Fu KG, McGinnis T, O’Connell MN, Hackett TA (2003) Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int J Psychophysiol 50:5–17Google Scholar
  115. Sekiyama K, Kanno I, Miura S, Sugita Y (2003) Auditory-visual speech perception examined by fMRI and PET. Neurosci Res 47:277–287Google Scholar
  116. Shah NJ, Marshall JC, Zafiris O, Schwab A, Zilles K, Markowitsch HJ, Fink GR (2001) The neural correlates of person familiarity A functional magnetic resonance imaging study with clinical implications. Brain 124:804–815Google Scholar
  117. Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge, MAGoogle Scholar
  118. Stoesz MR, Zhang M, Weisser VD, Prather SC, Mao H, Sathian K (2003) Neural networks active during tactile form perception: common and differential activity during macrospatial and microspatial tasks. Int J Psychophysiol 50:41–49Google Scholar
  119. Sumby WH, Pollack I (1954) Visual contribution to speech intelligibility in noise. J Acoust Soc Am 26:212–215Google Scholar
  120. Thierry G, Giraud AL, Price C (2003) Hemispheric dissociation in access to the human semantic system. Neuron 38:499–506Google Scholar
  121. Tootell RB, Tsao D, Vanduffel W (2003) Neuroimaging weighs in: humans meet macaques in “primate” visual cortex. J Neurosci 23:3981–3989Google Scholar
  122. Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4:157–165Google Scholar
  123. Ungerleider LG, Mishkin M (1982) Two cortical visual streams. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MAGoogle Scholar
  124. Wallace MT, Ramachandran R, Stein BE (2004a) A revised view of sensory cortical parcellation. Proc Natl Acad Sci USA 101:2167–2172Google Scholar
  125. Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004b) Unifying multisensory signals across time and space. Exp Brain Res [epub ahead of print]Google Scholar
  126. Welch RB, Warren DH (1986) Intersensory interactions. In: Boff KR, Kaufman L, Thomas J (eds) Handbook of perception and human performance. Wiley, New YorkGoogle Scholar
  127. Wernicke C (1874) Der aphasische Symptomenkomplex, eine psychologische Studie auf anatomischer Basis. Cohn& Weigert, BreslauGoogle Scholar
  128. Wright TM, Pelphrey KA, Allison T, McKeown MJ, McCarthy G (2003) Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb Cortex 13:1034–1043Google Scholar
  129. Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401:587–590Google Scholar
  130. Zatorre RJ, Bouffard M, Belin P (2004) Sensitivity to auditory object features in human temporal neocortex. J Neurosci 24:3637–3642Google Scholar
  131. Zeki SM (1978) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. Amedi
    • 1
  • K. von Kriegstein
    • 2
    • 3
  • N. M. van Atteveldt
    • 4
  • M. S. Beauchamp
    • 5
  • M. J. Naumer
    • 3
    • 6
    • 7
  1. 1.Laboratory for Magnetic Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.Cognitive Neurology UnitJohann-Wolfgang-Goethe UniversityFrankfurt/MainGermany
  3. 3.Brain Imaging Center (BIC)Frankfurt/MainGermany
  4. 4.Department of Cognitive Neuroscience, Faculty of PsychologyUniversity of MaastrichtMaastrichtThe Netherlands
  5. 5.Laboratory of Brain and CognitionNational Institute of Mental HealthBethesdaUSA
  6. 6.Department of NeurophysiologyMax Planck Institute for Brain ResearchFrankfurt/MainGermany
  7. 7.Institute of Medical PsychologyFrankfurt Medical SchoolFrankfurt/MainGermany

Personalised recommendations