Experimental Brain Research

, Volume 166, Issue 3–4, pp 325–336 | Cite as

Neural dynamics of cross-modal and cross-temporal associations

  • Gustavo Deco
  • Anders Ledberg
  • Rita Almeida
  • Joaquín Fuster
Research Article


We have studied a neurodynamic model of cross-modal and cross-temporal associations. We show that a network of integrate-and-fire neurons can generate spiking activity with realistic dynamics during the delay period of a paired associates task. In particular, the activity of the model resembles reported data from single-cell recordings in the prefrontal cortex.


Cross-modal and cross-temporal association Spiking dynamics Computational neuroscience 



Gustavo Deco was supported by Institució Catalana de Recerca i Estudis Avançats (ICREA). Rita Almeida was supported by a Marie Curie Individual Fellowship, QLK6-CT-2002-51439.


  1. Amit DJ (1995) The hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–657Google Scholar
  2. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252CrossRefPubMedGoogle Scholar
  3. Amit DJ, Mongillo G (2003) Selective delay activity in the cortex: phenomena and interpretation. Cereb Cortex 13:1139–1150CrossRefPubMedGoogle Scholar
  4. Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21:1399–1407CrossRefPubMedGoogle Scholar
  5. Brunel N (2003) Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cereb Cortex 13:1151–1161CrossRefPubMedGoogle Scholar
  6. Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85CrossRefPubMedGoogle Scholar
  7. Dayan P, Abbott L (2001) Theoretical neuroscience. MIT Press, CambridgeGoogle Scholar
  8. Deco G, Rolls ET (2004a) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642CrossRefGoogle Scholar
  9. Deco G, Rolls ET (2004b) Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cereb Cortex (in press)Google Scholar
  10. Deco G, Rolls ET, Horwitz B (2004) “What” and “where” in visual working memory: a computational neurodynamical perspective for integrating and single-neuron data. J Cogn Neurosci 16:683–701CrossRefPubMedGoogle Scholar
  11. Erickson CA, Desimone R (1999) Responses of macaque perirhinal neurons during and after visual stimulus association learning. J Neurosci 19:10404–10416PubMedGoogle Scholar
  12. Fuster JM (1997) The prefrontal cortex. Lippincott–Raven, PhiladelphiaGoogle Scholar
  13. Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351CrossRefPubMedGoogle Scholar
  14. Miyashita Y, Hayashi T (2000) Neural representation of visual objects: encoding and top-down activation. Curr Opin Neurobiol 10:187–194CrossRefPubMedGoogle Scholar
  15. Mongillo G, Amit DJ, Brunel N (2003) Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. Eur J Neurosci 18:2011–2024CrossRefPubMedGoogle Scholar
  16. Naya Y, Sakai K, Miyashita Y (1996) Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc Natl Acad Sci USA 93:2664–2669CrossRefPubMedGoogle Scholar
  17. Naya Y, Yoshida M, Takeda M, Fujimichi R, Miyashita Y (2003) Delay-period activities in two subdivisions of monkey inferotemporal cortex during pair association memory task. Eur J Neurosci 18:2915–2918CrossRefPubMedGoogle Scholar
  18. Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19:5493–5505PubMedGoogle Scholar
  19. Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:473–485CrossRefPubMedGoogle Scholar
  20. Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115CrossRefPubMedGoogle Scholar
  21. White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315–335CrossRefPubMedGoogle Scholar
  22. Zhou YD, Fuster JM (2000) Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc Natl Acad Sci USA 97:9777–9782CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Gustavo Deco
    • 1
    • 3
  • Anders Ledberg
    • 1
  • Rita Almeida
    • 1
  • Joaquín Fuster
    • 2
  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA)Universitat Pompeu Fabra Computational NeuroscienceBarcelonaSpain
  2. 2.Neuropsychiatric InstituteUniversity of California Los AngelesCAUSA
  3. 3.Department of TechnologyUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations