Skip to main content

Advertisement

Log in

The time-course of ribavirin-provoked changes of basal and AMPH-induced motor activities in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The time-course of changes of basal and amphetamine (AMPH)-induced locomotor and stereotypic activities in adult male Wistar rats after a single ribavirin injection was studied. In the first set of experiments, 10, 20 or 30 mg ribavirin/kg body weight (b.w.) were injected i.p. to rats and their basal motor activities were recorded every 10 min for 2 h and compared with those of saline-treated controls. In the second set of experiments, the animals were pretreated with ribavirin and 20 min later i.p. injected with AMPH (1.5 mg/kg b.w.). The controls received AMPH 20 min after the saline injection. Motor activity was recorded after the first injection and until 120 min after AMPH administration. Ribavirin did not significantly affect the time-course of either basal locomotor or stereotypic activities. Pretreatment with any of the applied ribavirin doses decreased the AMPH-induced hyperlocomotor response. However, the most pronounced effect was observed with ribavirin doses of 20 mg/kg and 30 mg/kg when administered during the first 10 min and 30 min after the AMPH injection respectively. In contrast, the stereotypic activities of these animals were only slightly changed. These results indicate a different susceptibility of regions in the basal ganglia to ribavirin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander SP, Reddington M (1989) The cellular localization of adenosine receptors in rat neostriatum. Neuroscience 28:645–651

    Article  CAS  PubMed  Google Scholar 

  • Ballarin M, Reiriz J, Ambrosio S, Mahy N (1995) Effect of locally infused 2-chloroadenosine, an A1 receptor agonist, on spontaneous and evoked dopamine release in rat neostriatum. Neurosci Lett 185:29–32

    Article  CAS  PubMed  Google Scholar 

  • Barraco RA, Martens KA, Parizon M, Normile HJ (1993) Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res Bull 31:397–404

    Article  CAS  PubMed  Google Scholar 

  • Barraco RA, Martens KA, Parizon M, Normile HJ (1994) Role of adenosine A2a receptors in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 18:545–553

    Article  CAS  PubMed  Google Scholar 

  • Crumpacker C, Bubley G, Lucey D, Hussey S, Connor J (1986) Ribavirin enters cerebrospinal fluid. Lancet 2:45–46

    Article  CAS  Google Scholar 

  • De Sarro A, Naccari F, De Sarro GB, Ammendola D, Rotiroti D, Trimarchi GR (1990) Ribavirin-induced behavioral, body temperature and electrocortical spectra effects in the rat. Arch Int Pharmacodyn Ther 304:125–135

    CAS  PubMed  Google Scholar 

  • Durcan MJ, Morgan PF (1989) NECA-induced hypomotility in mice: evidence for a predominantly central site of action. Pharmacol Biochem Behav 32:487–490

    Article  CAS  PubMed  Google Scholar 

  • Ferré S, O’Connor WT, Fuxe K, Ungerstedt U (1993) The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 13:5402–5406

    PubMed  Google Scholar 

  • Ferré S, Popoli P, Gimenez-Llort L, Finnman UB, Martinez E, Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76

    PubMed  Google Scholar 

  • Ferré S, Popoli P, Tinner-Staines B, Fuxe K (1996) Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci Lett 208:109–112

    Article  PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  Google Scholar 

  • Franchetti P, Cappellacci L, Grifantini M, Senatore G, Martini C, Lucacchini A (1995) Tiazofurin analogues as selective agonists of A1 adenosine receptors. Res Commun Mol Pathol Pharmacol 87:103–105

    CAS  Google Scholar 

  • Fuxe K, Ferré S, Zoli M, Agnati LF (1998) Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2a/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Rev 26:258–273

    Article  CAS  PubMed  Google Scholar 

  • Gilbert BE, Wyde PR, Wilson SZ, Robins RK (1991) Aerosol and intraperitoneal administration of ribavirin and ribavirin triacetate: pharmacokinetics and protection of mice against intracerebral infection with influenza A/WSN virus. Antimicrob Agents Chemother 35:1448–1453

    CAS  PubMed  Google Scholar 

  • Heffner TG, Wiley JN, Williams AE, Bruns RF, Coughenour LL, Downs DA (1989) Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice. Psychopharmacology (Berl) 98:31–37

    Article  CAS  Google Scholar 

  • Hosoya M, Shigeta S, Mori S, Tomoda A, Shiraishi S, Miike T, Suzuki H (2001) High-dose intravenous ribavirin therapy for subacute sclerosing panencephalitis. Antimicrob Agents Chemother 45:943–945

    Article  CAS  PubMed  Google Scholar 

  • Janać B, Pešić V, Veskov R, Ristić S, Tasić J, Piperski V, Ruždijić S, Jokanović M, Stukalov P, Rakić Lj (2004) The effects of tiazofurin on basal and amphetamine-induced motor activity in rats. Pharmacol Biochem Behav 77:575–582

    Article  PubMed  Google Scholar 

  • Kuczenski R (1986) Dose response for amphetamine-induced changes in dopamine levels in push-pull perfusates of rat striatum. J Neurochem 46:1605–1611

    CAS  PubMed  Google Scholar 

  • Le Moal M (1995) Mesolimbic dopaminergic neurons: functional and regulatory roles. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the Fourth Generation of Progress. Raven, New York, pp 283–294

    Google Scholar 

  • Lillrank SM, Lipska BK, Weinberger DR, Fredholm BB, Fuxe K, Ferré S (1999) Adenosine and dopamine receptor antagonist binding in the rat ventral and dorsal striatum: lack of changes after a neonatal bilateral lesion of the ventral hippocampus. Neurochem Int 34:235–244

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg T, Ungerstedt U (1985) A rapid and simple behavioural screening method for simultaneous assessment of limbic and striatal blocking effects of neuroleptic drugs. Pharmacol Biochem Behav 23:479–485

    Article  CAS  PubMed  Google Scholar 

  • Marston HM, Finlayson K, Maemoto T, Olverman HJ, Akahane A, Sharkey J, Butcher SP (1998) Pharmacological characterization of a simple behavioral response mediated selectively by central adenosine A1 receptors, using in vivo and in vitro techniques. J Pharmacol Exp Ther 285:1023–1030

    CAS  PubMed  Google Scholar 

  • Mayfield RD, Jones BA, Miller HA, Simosky JK, Larson GA, Zahniser NR (1999) Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamine D1 receptor interaction in rat brain limbic regions but not basal ganglia. Synapse 33:274–281

    Article  CAS  PubMed  Google Scholar 

  • Nikodijević O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther 259:286–294

    PubMed  Google Scholar 

  • Ochiishi T, Chen L, Yukawa A, Saitoh Y, Sekino Y, Arai T, Nakata H, Miyamoto H (1999) Cellular localization of adenosine A1 receptors in rat forebrain: Immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody. J Comp Neurol 411:301–316

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Malec D (2000) Influence of adenosine receptor agonists and antagonists on amphetamine-induced stereotypy in rats. Pol J Pharmacol 52:423–429

    CAS  PubMed  Google Scholar 

  • Popoli P, Giménez-Llort L, Pezzola A, Reggio R, Martínez E, Fuxe K, Ferré S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213

    Article  CAS  PubMed  Google Scholar 

  • Rivkees SA, Price SL, Zhou FC (1995) Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res 677:193–203

    Article  CAS  PubMed  Google Scholar 

  • Rosa-Kenig A, Puotz JK, Rebec GV (1993) The involvement of D1 and D2 dopamine receptors in amphetamine-induced changes in striatal unit activity in behaving rats. Brain Res 619:347–351

    Article  CAS  PubMed  Google Scholar 

  • Schwienbacher I, Fendt M, Hauber W, Koch M (2002) Dopamine D1 receptors and adenosine A1 receptors in the rat nucleus accumbens regulate motor activity but not prepulse inhibition. Eur J Pharmacol 444:161–169

    Article  CAS  PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behaviour. Annu Rev Pharmacol Toxicol 33:639–677

    Article  CAS  PubMed  Google Scholar 

  • Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res 401:322–330

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Wade M (1986) Ribavirin: a broad spectrum antiviral agent. In: T Stapleton (ed) Studies with a broad spectrum antiviral agent. Royal Society of Medicine Services, London, pp. 99–118

    Google Scholar 

  • Staton DM, Solomon PR (1984) Microinjections of d-amphetamine into the nucleus accumbens and caudate-putamen differentially affect stereotypy and locomotion in the rat. Physiol Psychol 12:159–162

    CAS  Google Scholar 

  • Turgeon SM, Pollack AE, Schusheim L, Fink JS (1996) Effects of selective adenosine A1 and A2a agonists on amphetamine-induced locomotion and c-Fos in striatum and nucleus accumbens. Brain Res 707:75–80

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry for Science, Technology and Environmental Protection of the Republic of Serbia, Contract no. 1647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branka Janać.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janać, B., Pešić, V., Peković, S. et al. The time-course of ribavirin-provoked changes of basal and AMPH-induced motor activities in rats. Exp Brain Res 165, 402–406 (2005). https://doi.org/10.1007/s00221-005-2311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2311-0

Keywords

Navigation