Experimental Brain Research

, Volume 169, Issue 4, pp 461–466 | Cite as

Motion adaptation: net duration matters, not continuousness

  • Sven P. Heinrich
  • Anja M. Schilling
  • Michael BachEmail author
Research Article


Motion processing is strongly adaptable. Adaptation strength generally increases with motion duration. Little is known, though, about the effect of motion onsets and offsets, which might be relevant if adaptation is not based on motion duration per se, but on the recent cumulated activity of motion-processing mechanisms. Thus, we presented intermittent motion with three different onset rates for adaptation. The duty cycle was kept constant at 33% while the rate of motion onsets was either 1.4, 2.8, or 5.6 per second. Stationary stimuli and continuous motion were used as reference conditions. The amplitude of the N2 component of human motion visual evoked potentials was used to quantify adaptation. All three onset rates induced virtually identical amounts of adaptation (occipitally, P=0.71; occipito-temporally, P=0.27), suggesting that the continuousness of the stimulus does not play an important role in motion adaptation. This was confirmed by measuring the motion aftereffect psychophysically.


Motion perception Adaptation Neural dynamics Transient mechanisms Visual evoked potentials 



We are grateful to our subjects for their participation.


  1. Addams R (1834) An account of a peculiar optical phaenomenon seen after having looked at a moving body. Lond Edinb Phil Mag J Sci 5:373–374Google Scholar
  2. Amano K, Kuriki I, Takeda T (2005) Direction-specific adaptation of magnetic responses to motion onset. Vision Res 45:2533–2548PubMedCrossRefGoogle Scholar
  3. American Encephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113CrossRefGoogle Scholar
  4. Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91PubMedCrossRefGoogle Scholar
  5. Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547PubMedCrossRefGoogle Scholar
  6. Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849PubMedCrossRefGoogle Scholar
  7. Bair W (2004) No doubt about offset latency. Vis Neurosci 21:671–674PubMedCrossRefGoogle Scholar
  8. Bair W, Cavanaugh JR, Smith MA, Movshon JA (2002) The timing of response onset and offset in macaque visual neurons. J Neurosci 22:3189–3205PubMedGoogle Scholar
  9. Bundo M, Kaneoke Y, Inao S, Yoshida J, Nakamura A, Kakigi R (2000) Human visual motion areas determined individually by magnetoencephalography and 3D magnetic resonance imaging. Hum Brain Mapp 11:34–45CrossRefGoogle Scholar
  10. Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:85–96CrossRefGoogle Scholar
  11. Clifford CWG, Langley K (1996) Psychophysics of motion adaptation parallels insect electrophysiology. Curr Biol 6:1340–1342PubMedCrossRefGoogle Scholar
  12. Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424PubMedGoogle Scholar
  13. Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6:116–127PubMedCrossRefGoogle Scholar
  14. ffytche DH, Guy CN, Zeki S (1995) The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118:86–96CrossRefGoogle Scholar
  15. Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 14:47–51PubMedGoogle Scholar
  16. Göpfert E, Müller R, Hartwig M (1984) Effects of movement adapation on movement visual evoked potentials. Doc Ophthal Proc Ser 40:321–324Google Scholar
  17. Göpfert E, Schlykowa L, Müller R (1988) Zur Topographie des Bewegungs-VEP am Menschen. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 19:14–20PubMedGoogle Scholar
  18. Göpfert E, Müller R, Breuer D, Greenlee MW (1999) Similarities and dissimilarities between pattern VEPs and motion VEPs. Doc Ophthalmol 97:67–79CrossRefGoogle Scholar
  19. van de Grind WA, Lankheet MJM, Tao R (2003) A gain-control model relating nulling results to the duration of dynamic motion aftereffects. Vision Res 43:117–133PubMedCrossRefGoogle Scholar
  20. Hammett ST, Thompson PG, Bedingham S (2000) The dynamics of velocity adaptation in human vision. Curr Biol 10:1123–1126PubMedCrossRefGoogle Scholar
  21. Heinrich SP, Bach M (2003) Adaptation characteristics of steady-state motion visual evoked potentials. Clin Neurophysiol 114:1359–1366PubMedCrossRefGoogle Scholar
  22. Heinrich SP, van der Smagt MJ, Bach M, Hoffmann MB (2004) Electrophysiological evidence for independent speed channels in human motion processing. J Vision 4:469–475CrossRefGoogle Scholar
  23. Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion onset visual evoked potentials and subjective estimates. Vision Res 39:437–444PubMedCrossRefGoogle Scholar
  24. Hoffmann MB, Unsöld A, Bach M (2001) Directional tuning of motion adaptation in the motion-onset VEP. Vision Res 41:2187–2194PubMedCrossRefGoogle Scholar
  25. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70Google Scholar
  26. Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMedCrossRefGoogle Scholar
  27. Kubová Z, Kuba M, Hubacek J, Vit F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72PubMedCrossRefGoogle Scholar
  28. Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMedCrossRefGoogle Scholar
  29. Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246PubMedGoogle Scholar
  30. Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms. Exp Brain Res 151:536–541PubMedCrossRefGoogle Scholar
  31. Maurer JP, Heinrich TS, Bach M (2004) Direction tuning of human motion detection determined from a population model. Eur J Neurosci 19:3359–3364PubMedCrossRefGoogle Scholar
  32. Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential visually evoked by motion. Acta Neurobiol Exp (Warsz) 48:239–249Google Scholar
  33. Müller R, Göpfert E, Hartwig M (1986) The effect of movement adaptation on human cortical potentials evoked by pattern movement. Acta Neurobiol Exp (Warsz) 46:293–301Google Scholar
  34. Müller R, Göpfert E, Leinweber M, Greenlee MW (2004) Effect of adaptation direction on the motion VEP and perceived speed of drifting gratings. Vision Res 44:2381–2392PubMedCrossRefGoogle Scholar
  35. Priebe NJ, Churchland MM, Lisberger SG (2002) Constraints on the source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanims. J Neurophysiol 88:354–369PubMedGoogle Scholar
  36. Probst T, Plendl H, Paulus W, Wist ER, Scherg M (1993) Identification of the visual motion area (area V5) in the human brain by dipole source analysis. Exp Brain Res 93:345–351PubMedCrossRefGoogle Scholar
  37. Schellart NAM, Trindade MJG, Reits D, Verbunt JPA, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134PubMedCrossRefGoogle Scholar
  38. Schlykowa L, van Dijk BW, Ehrenstein WH (1993) Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. Cogn Brain Res 1:169–174CrossRefGoogle Scholar
  39. Shulman GL, Schwarz J, Miezin FM, Petersen SE (1998) Effect of motion contrast on human cortical responses to moving stimuli. J Neurophysiol 79:2794–2803PubMedGoogle Scholar
  40. Skrandies W, Jedynak A, Kleiser R (1998) Scalp distribution components of brain activity evoked by visual motion stimuli. Exp Brain Res 122:62–70PubMedCrossRefGoogle Scholar
  41. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830PubMedGoogle Scholar
  42. Wist ER, Gross JD, Niedeggen M (1994) Motion aftereffects with random-dot chequerboard kinematograms: relation between psychophysical and VEP measures. Perception 23:1155–1162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sven P. Heinrich
    • 1
  • Anja M. Schilling
    • 1
  • Michael Bach
    • 1
    Email author
  1. 1.Sektion Funktionelle SehforschungUniv.-Augenklinik FreiburgFreiburgGermany

Personalised recommendations