Differential effects of subthalamic nucleus stimulation in advanced Parkinson disease on reaction time performance

  • Yasin Temel
  • Arjan Blokland
  • Linda Ackermans
  • Peter Boon
  • Vivianne H.J.M. van Kranen-Mastenbroek
  • E.A.M. Beuls
  • Geert H. Spincemaille
  • Veerle Visser-Vandewalle
Research Article

Abstract

The aim of the present study was to assess the effect of bilateral subthalamic nucleus (STN) stimulation and dopaminergic medication on speed of mental processing and motor function. Thirty-nine patients suffering from advanced Parkinson disease (PD) were operated on. Motor function and reaction time (RT) performance [simple RT (SRT) and complex RT (CRT)] were evaluated under four experimental conditions with stimulation (stim) and medication (med) on and off: stim-on/med-on, stim-on/med-off, stim-off/med-off and stim-off/med-on. In the last condition, the patients received either low medication (usual dose) or high medication (suprathreshold dose). STN stimulation improved the motor performance in the SRT and CRT tasks. Furthermore, STN deep brain stimulation (DBS) also improved response preparation as shown by the significant improvement of the RT performance in the SRT task. This effect of STN DBS on the RT performance in the SRT task was greater as compared with the CRT task. This is due to the more complex information processing that is required in the CRT task as compared to the SRT task. These data suggest that treatment of STN hyperactivity by DBS improves motor function, confirming earlier reports, but has a differential effect on cognitive functions. The STN seems to be an important modulator of cognitive processing and STN DBS can differentially affect motor and associative circuits.

Keywords

Reaction time performance Subthalamic nucleus Deep brain stimulation Central slowing Parkinson disease 

Notes

Acknowledgements

This study was funded by the Dutch Medical Research Council (ZonMw), grant no: 940-37-027 and the Dutch Brain Foundation (Hersenstichting) grants 10F02.13, 10F03.19, and 10F04.17. We thank Ms. M. Strijkers, Mrs. M. Waber and Mrs. N. Bakker for their technical assistance.

References

  1. Alegret M, Junque C, Valldeoriola F, Vendrell P, Pilleri M, Rumia J, Tolosa E (2001) Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 58:1223–1227PubMedCrossRefGoogle Scholar
  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedCrossRefGoogle Scholar
  3. Alexander GE, Crutcher MD, DeLong MR (1990a) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. In: Feenstra MGP (ed) Progress in brain research, vol 85. Elsevier, Amsterdam, pp119–146Google Scholar
  4. Alexander GE, Crutcher MD, DeLong MR (1990b) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedGoogle Scholar
  5. Ardouin C, Pillon B, Peiffer E, Bejjani P, Limousin P, Damier P, Arnulf I, Benabid AL, Agid Y, Pollak P (1999) Bilateral subthalamic or pallidal stimulation for Parkinson’s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 46:217–223PubMedCrossRefGoogle Scholar
  6. Baunez C, Humby T, Eagle DM, Ryan LJ, Dunnett SB, Robbins TW (2001) Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. Eur J Neurosci 13:1609–1616PubMedCrossRefGoogle Scholar
  7. Baunez C, Nieoullon A, Amalric M (1995) In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci 15:6531–6541PubMedGoogle Scholar
  8. Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9:2086–2099PubMedCrossRefGoogle Scholar
  9. Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13:696–706PubMedCrossRefGoogle Scholar
  10. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–16PubMedGoogle Scholar
  11. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRefGoogle Scholar
  12. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356PubMedGoogle Scholar
  13. Beurrier C, Garcia L, Bioulac B, Hammond C (2002) Subthalamic nucleus: a clock inside basal ganglia? Thalamus Relat Syst 2:1–8Google Scholar
  14. Bloxham CA, Mindel TA, Frith CD (1984) Initiation and execution of predictable and unpredictable movements in Parkinson’s disease. Brain 107(Pt 2):371–384PubMedCrossRefGoogle Scholar
  15. Brown RG, Marsden CD (1988) Subcortical dementia’: the neuropsychological evidence. Neuroscience 25:363–387PubMedCrossRefGoogle Scholar
  16. Brusa L, Pierantozzi M, Peppe A, Altibrandi MG, Giacomini P, Mazzone P, Stanzione P (2001) Deep brain stimulation (DBS) attentional effects parallel those of l-dopa treatment. J Neural Transm 108:1021–1027PubMedCrossRefGoogle Scholar
  17. Cooper JA, Sagar HJ, Tidswell P, Jordan N (1994) Slowed central processing in simple and go/no-go reaction time tasks in Parkinson’s disease. Brain 117(Pt 3):517–529PubMedCrossRefGoogle Scholar
  18. Daniele A, Albanese A, Contarino MF, Zinzi P, Barbier A, Gasparini F, Romito LM, Bentivoglio AR, Scerrati M (2003) Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 74:175–182PubMedCrossRefGoogle Scholar
  19. Darbaky Y, Forni C, Amalric M, Baunez C (2003) High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. Eur J Neurosci 18:951–956PubMedCrossRefGoogle Scholar
  20. Desbonnet L, Temel Y, Visser-Vandewalle V, Blokland A, Hornikx V, Steinbusch HW (2004) Premature responding following bilateral stimulation of the rat subthalamic nucleus is amplitude and frequency dependent. Brain Res 1008:198–204PubMedCrossRefGoogle Scholar
  21. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S63–68PubMedCrossRefGoogle Scholar
  22. Dujardin K, Defebvre L, Krystkowiak P, Blond S, Destee A (2001) Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol 248:603–611PubMedCrossRefGoogle Scholar
  23. Evarts EV, Teravainen DB, Calne DB (1981) Reaction time in Parkinson’s disease. Brain 104:167–186PubMedCrossRefGoogle Scholar
  24. Fahn S (1987) Unified Parkinson’s disease rating scale. In: Goldstein M (eds) Recent developments in Parkinson’s disease, vol 2. Macmillan Healthcare information, NJ, pp 153–163Google Scholar
  25. Funkiewiez A, Ardouin C, Krack P, Fraix V, Van Blercom N, Xie J, Moro E, Benabid AL, Pollak P (2003) Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson’s disease. Mov Disord 18:524–530PubMedCrossRefGoogle Scholar
  26. Gauntlett-Gilbert J, Brown VJ (1998) Reaction time deficits and Parkinson’s disease. Neurosci Biobehav Rev 22:865–881PubMedCrossRefGoogle Scholar
  27. Gironell A, Kulisevsky J, Rami L, Fortuny N, Garcia-Sanchez C, Pascual-Sedano B (2003) Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J Neurol 250:917–923Google Scholar
  28. Grill WM, McIntyre C (2001) Extracellular excitation of central neurons: implications for the mechanism of deep brain stimulation. Thalamus Relat Syst 1:269–277Google Scholar
  29. Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 15:1137–1140PubMedCrossRefGoogle Scholar
  30. Hälbig TD, Gruber D, Kopp UA, Scherer P, Schneider G, Trottenberg T, Arnold G, Kupsch A (2004) Subthalamic stimulation differentially modulates declarative and non-declarative memory. Neuroreport 15:539–543PubMedCrossRefGoogle Scholar
  31. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedCrossRefGoogle Scholar
  32. Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62:1110–1114PubMedGoogle Scholar
  33. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442PubMedCrossRefGoogle Scholar
  34. Jahanshahi M, Ardouin CM, Brown RG, Rothwell JC, Obeso J, Albanese A, Rodriguez-Oroz MC, Moro E, Benabid AL, Pollak P, Limousin-Dowsey P (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123(Pt 6):1142–1154PubMedCrossRefGoogle Scholar
  35. Jordan N, Sagar HJ, Cooper JA (1992) Cognitive components of reaction time in Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:658–664PubMedCrossRefGoogle Scholar
  36. Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99:489–495PubMedGoogle Scholar
  37. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349:1925–1934PubMedCrossRefGoogle Scholar
  38. Kumar R, Lozano AM, Sime E, Halket E, Lang AE (1999) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 53:561–566PubMedGoogle Scholar
  39. Kutukcu Y, Marks WJ Jr, Goodin DS, Aminoff MJ (1999) Simple and choice reaction time in Parkinson’s disease. Brain Res 815:367–372PubMedCrossRefGoogle Scholar
  40. Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 7:2–13PubMedCrossRefGoogle Scholar
  41. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111PubMedCrossRefGoogle Scholar
  42. Lozano AM, Dostrovsky J, Chen R, Ashby P (2002) Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 1:225–231PubMedCrossRefGoogle Scholar
  43. McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91:1457–1469PubMedCrossRefGoogle Scholar
  44. Moretti R, Torre P, Antonello RM, Capus L, Gioulis M, Marsala SZ, Cazzato G, Bava A (2001) Effects on cognitive abilities following subthalamic nucleus stimulation in Parkinson’s disease. Eur J Neurol 8:726–727PubMedCrossRefGoogle Scholar
  45. Moretti R, Torre P, Antonello RM, Capus L, Gioulis M, Marsala SZ, Cazzato G, Bava A (2002) Cognitive changes following subthalamic nucleus stimulation in two patients with Parkinson disease. Percept Mot Skills 95:477–486PubMedGoogle Scholar
  46. Moser A, Gieselberg A, Ro B, Keller C, Qadri F (2003) Deep brain stimulation: response to neuronal high frequency stimulation is mediated through GABA(A) receptor activation in rats. Neurosci Lett 341:57–60PubMedCrossRefGoogle Scholar
  47. Ostergaard K, Sunde N, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord 17:693–700PubMedCrossRefGoogle Scholar
  48. Parent A, Hazrati LN (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127PubMedCrossRefGoogle Scholar
  49. Parent A, Hazrati LN (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154PubMedCrossRefGoogle Scholar
  50. Pate DS, Margolin DI (1994) Cognitive slowing in Parkinson’s and Alzheimer’s patients: distinguishing bradyphrenia from dementia. Neurology 44:669–674PubMedGoogle Scholar
  51. Perozzo P, Rizzone M, Bergamasco B, Castelli L, Lanotte M, Tavella A, Torre E, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: comparison of pre- and postoperative neuropsychological evaluation. J Neurol Sci 192:9–15PubMedCrossRefGoogle Scholar
  52. Pillon B, Ardouin C, Damier P, Krack P, Houeto JL, Klinger H, Bonnet AM, Pollak P, Benabid AL, Agid Y (2000) Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology 55:411–418PubMedGoogle Scholar
  53. Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682PubMedCrossRefGoogle Scholar
  54. Rogers D, Lees AJ, Smith E, Trimble M, Stern GM (1987) Bradyphrenia in Parkinson’s disease and psychomotor retardation in depressive illness. An experimental study. Brain 110(Pt 3):761–776Google Scholar
  55. Romito LM, Scerrati M, Contarino MF, Bentivoglio AR, Tonali P, Albanese A (2002) Long-term follow up of subthalamic nucleus stimulation in Parkinson’s disease. Neurology 58:1546–1550PubMedGoogle Scholar
  56. Sagar HJ, Sullivan EV, Gabrieli JD, Corkin S, Growdon JH (1988) Temporal ordering and short-term memory deficits in Parkinson’s disease. Brain 111 (Pt 3):525–539PubMedCrossRefGoogle Scholar
  57. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123(Pt 10):2091–2108PubMedCrossRefGoogle Scholar
  58. Schneider F, Habel U, Volkmann J, Regel S, Kornischka J, Sturm V, Freund HJ (2003) Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Arch Gen Psychiatry 60:296–302PubMedCrossRefGoogle Scholar
  59. Schubert T, Volkmann J, Muller U, Sturm V, Voges J, Freund HJ, Von Cramon DY (2002) Effects of pallidal deep brain stimulation and levodopa treatment on reaction-time performance in Parkinson’s disease. Exp Brain Res 144:8–16PubMedCrossRefGoogle Scholar
  60. Sheridan MR, Flowers KA, Hurrell J (1987) Programming and execution of movement in Parkinson’s disease. Brain 110(Pt 5):1247–1271PubMedCrossRefGoogle Scholar
  61. Simuni T, Jaggi JL, Mulholland H, Hurtig HI, Colcher A, Siderowf AD, Ravina B, Skolnick BE, Goldstein R, Stern MB, Baltuch GH (2002) Bilateral stimulation of the subthalamic nucleus in patients with Parkinson disease: a study of efficacy and safety. J Neurosurg 96:666–672PubMedGoogle Scholar
  62. Temel Y, Ackermans L, Celik H, Spincemaille GH, Van Der Linden C, Walenkamp GH, Van De Kar T, Visser-Vandewalle V (2004) Management of hardware infections following deep brain stimulation. Acta Neurochir (Wien) 146:355–361CrossRefGoogle Scholar
  63. Temel Y, Visser-Vandewalle V, Aendekerk B, Rutten B, Tan S, Scholtissen B, Schmitz C, Blokland A, Steinbusch HW (2005) Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus. Exp Neurol 193:43–52PubMedCrossRefGoogle Scholar
  64. Valldeoriola F, Pilleri M, Tolosa E, Molinuevo JL, Rumia J, Ferrer E (2002) Bilateral subthalamic stimulation monotherapy in advanced Parkinson’s disease: long-term follow-up of patients. Mov Disord 17:125–132PubMedCrossRefGoogle Scholar
  65. Vingerhoets G, van der Linden C, Lannoo E, Vandewalle V, Caemaert J, Wolters M, Van den Abbeele D (1999) Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 66:297–304PubMedGoogle Scholar
  66. Visser-Vandewalle V, Temel Y, Colle H, van der Linden C (2003a) Bilateral high-frequency stimulation of the subthalamic nucleus in patients with multiple system atrophy—parkinsonism. Report of four cases. J Neurosurg 98:882–887Google Scholar
  67. Visser-Vandewalle V, van der Linden C, Temel Y, Nieman F, Celik H, Beuls E (2003b) Long-term motor effect of unilateral pallidal stimulation in 26 patients with advanced Parkinson disease. J Neurosurg 99:701–707PubMedGoogle Scholar
  68. Visser-Vandewalle V, Temel Y, van der Linden C, Ackermans L, Beuls E (2004) Deep brain stimulation in movement disorders. The applications reconsidered. Acta Neurol Belg 104:33–36Google Scholar
  69. Witt K, Pulkowski U, Herzog J, Lorenz D, Hamel W, Deuschl G, Krack P (2004) Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch Neurol 61:697–700PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Yasin Temel
    • 1
  • Arjan Blokland
    • 2
  • Linda Ackermans
    • 1
  • Peter Boon
    • 3
  • Vivianne H.J.M. van Kranen-Mastenbroek
    • 4
  • E.A.M. Beuls
    • 1
  • Geert H. Spincemaille
    • 1
  • Veerle Visser-Vandewalle
    • 1
  1. 1.Departments of Neurosurgery and Cellular Neuroscience, European Graduate School of Neuroscience (EURON)University Hospital MaastrichtMaastrichtThe Netherlands
  2. 2.Faculty of Psychology, European Graduate School of Neuroscience (EURON)University of MaastrichtMaastrichtThe Netherlands
  3. 3.Medical Psychology, European Graduate School of Neuroscience (EURON)University Hospital MaastrichtMaastrichtThe Netherlands
  4. 4.Clinical Neurophysiology, European Graduate School of Neuroscience (EURON)University Hospital MaastrichtMaastrichtThe Netherlands

Personalised recommendations