Experimental Brain Research

, Volume 153, Issue 2, pp 140–145 | Cite as

FMRI evidence for a 'parietal reach region' in the human brain

  • Jason D. Connolly
  • Richard A. Andersen
  • Melvyn A. Goodale
Research Article

Abstract

Event-related functional magnetic resonance imaging was used to examine activation in the posterior parietal cortex when subjects made pointing movements or saccades to the same spatial location. One region, well positioned to be homologous to the monkey parietal reach region (PRR), responded preferentially during memory-delay trials in which the subject planned to point to a specific location as compared to trials in which the subject planned to make a saccade to that same location. We therefore conclude that activation in this region is related to specific motor intent; i.e. it encodes information related to the subject's intention to make a specific movement to a particular spatial location.

Keywords

fMRI Intention-related activity Posterior parietal cortex Reaching 

References

  1. Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220CrossRefPubMedGoogle Scholar
  2. Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260Google Scholar
  3. Buckner R (1998) Event-related fMRI and the haemodynamic response. Hum Brain Mapp 6:373–377CrossRefPubMedGoogle Scholar
  4. Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636Google Scholar
  5. Calton JL, Dickenson AR, Snyder LH (2002) Non-spatial, motor-specific activation in posterior parietal cortex. Nature Neurosci 5:580–588CrossRefPubMedGoogle Scholar
  6. Connolly JD, Goodale MA, DeSouza JFX, Menon RS, Vilis T (2000) A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J Neurophys 84:1645–1655PubMedGoogle Scholar
  7. Connolly JD, Goodale MA, Menon RS, Munoz DP (2002) Human fMRI evidence for the neural correlates of preparatory set. Nature Neurosci 5:1345–1352CrossRefPubMedGoogle Scholar
  8. Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163CrossRefPubMedGoogle Scholar
  9. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340CrossRefGoogle Scholar
  10. Ferraina S, Johnson PB, Garasto MR, Battaglia-Mayer A, Ercolani L, Bianchi L, Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9:416–429CrossRefPubMedGoogle Scholar
  11. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33:636–647PubMedGoogle Scholar
  12. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699PubMedGoogle Scholar
  13. Galletti C, Fattori P, Kutz DF, Battaglini PP (1997) Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. Eur J Neurosci 9:410–413PubMedGoogle Scholar
  14. Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220PubMedGoogle Scholar
  15. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedGoogle Scholar
  16. Kirchoff BA, Wagner AD, Maril A, Stern C (2000) Pre-frontal temporal circuitry for episodic encoding and subsequent memory. J Neurosci 20:6173–6180PubMedGoogle Scholar
  17. Lacquaniti F, Caminiti RJ (1997) Combination of hand and gaze signals during reaching: activity in parietal area 7 m of the monkey. J Neurophysiol 77:1034–1038PubMedGoogle Scholar
  18. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the haemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11:735–759CrossRefPubMedGoogle Scholar
  19. Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, OxfordGoogle Scholar
  20. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMedGoogle Scholar
  21. Ogawa S, Tank D, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955PubMedGoogle Scholar
  22. Pesaran B, Pezaris J, Sahani M, Mitra PM, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neurosci 5:805–811CrossRefPubMedGoogle Scholar
  23. Shenoy KV, Kureshi SA, Meeker D, Gillikin BL, Dubowitz DJ, Batista AP, Buneo CA, Cao S, Burdick JW, Andersen RA (1999) Soc for Neurosci 25:152.19Google Scholar
  24. Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci 10:3171–3193CrossRefPubMedGoogle Scholar
  25. Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170PubMedGoogle Scholar
  26. Snyder LH, Batista AP, Andersen RA (1998) Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. J Neurophysiol 79:2814–2819PubMedGoogle Scholar
  27. Snyder LH, Batista AP, Andersen RA (2000) Intention-related activity in the posterior parietal cortex: a review. Vision Res 40:1433–1441PubMedGoogle Scholar
  28. Talaraich J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  29. Tanne J, Boussaoud D, Boyer-Zeller N, Rouiller EM (1995) Direct visual pathways for reaching movements in the macaque monkey. Neuroreport 7:267–272PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Jason D. Connolly
    • 1
  • Richard A. Andersen
    • 2
  • Melvyn A. Goodale
    • 1
  1. 1.CIHR Group on Action and Perception, Department of PsychologyUniversity of Western OntarioLondonCanada
  2. 2.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations