Experimental Brain Research

, Volume 151, Issue 4, pp 536–541 | Cite as

Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms

  • J. Peter Maurer
  • Michael BachEmail author
Research Article


Onset of visual motion evokes a component in the EEG, the motion onset VEP. Exploring its motion specificity with a direction-specific adaptation paradigm, previous work demonstrated that less than 50% of the motion onset VEP represents actual motion detection. Here, we tested whether preadaptation of flicker-sensitive mechanisms can help to isolate motion-specific responses in the VEP. Flicker preadaptation was accomplished by limiting dot lifetime in the random-dot kinematograms that we used to study the direction specificity of motion adaptation. With unlimited dot lifetime, motion adaptation reduced the VEP amplitude to 35% (adapted direction) and 50% (opposite direction). With the shortest dot lifetime (40 ms), motion adaptation reduced the amplitude to 55% (adapted direction) and 70% (opposite direction). These findings suggest that random-dot kinematograms with short dot lifetimes could improve the investigation of human motion processing, be it in electrophysiology or other fields. While such stimuli successfully preadapt flicker-related components, they still evoke a sizable response, of which an estimated 70% is motion-specific.


Motion detection Adaptation Cortex Human VEP 



We gratefully acknowledge Sven P. Heinrich's advice and thank our subjects for their patience.


  1. Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130PubMedGoogle Scholar
  2. American Encephalographic Society (1994) Guideline thirteen: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113PubMedGoogle Scholar
  3. Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91PubMedGoogle Scholar
  4. Bach M (1999) Bildergeschichte. Apples DrawSprocket in eigenen Programmen verwenden. c't 6:350–353Google Scholar
  5. Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385PubMedGoogle Scholar
  6. Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials (motion VEP). Vision Res 34:1541–1547PubMedGoogle Scholar
  7. Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849PubMedGoogle Scholar
  8. Bach M, Ullrich D, Hoffmann M (1996) Motion-onset VEP: missing direction-specificity of adaptation? Invest Ophthalmol Vis Sci 37:S446, 2040Google Scholar
  9. Baker CL Jr, Hess RF, Zihl J (1991) Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11:454–461PubMedGoogle Scholar
  10. Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306PubMedGoogle Scholar
  11. Brigell M, Strafella A, Parmeggiani L, DeMarco PJ Jr, Celesia GG (1996) The effects of luminance and chromatic background flicker on the human visual evoked potential. Vis Neurosci 13:265–275PubMedGoogle Scholar
  12. Britten KH, Newsome WT (1998) Tuning bandwidths for near-threshold stimuli in area MT. J Neurophysiol 80:762–770PubMedGoogle Scholar
  13. Burr DC, Santoro L (2001) Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Res 41:1891–1899CrossRefPubMedGoogle Scholar
  14. Clarke PG (1972) Visual evoked potentials to sudden reversal of the motion of a pattern. Brain Res 36:453–458PubMedGoogle Scholar
  15. Clarke PG (1973a) Comparison of visual evoked potentials to stationary and to moving patterns. Exp Brain Res 18:156–164PubMedGoogle Scholar
  16. Clarke PG (1973b) Visual evoked potentials to changes in the motion of a patterned field. Exp Brain Res 18:145–155PubMedGoogle Scholar
  17. Clarke PG (1974) Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? Vision Res 14:1281–1284Google Scholar
  18. Culham JC, Dukelow SP, Vilis T, Hassard FA, Gati JS, Menon RS, Goodale MA (1999) Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. J Neurophysiol 81:388–393PubMedGoogle Scholar
  19. DeMarco PJ Jr, Brigell MG, Gordon M (1997) The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light. Vision Res 37:2419–2425CrossRefPubMedGoogle Scholar
  20. DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226PubMedGoogle Scholar
  21. Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. Z EEG-EMG 14:47–51Google Scholar
  22. Hautzel H, Taylor JG, Krause BJ, Schmitz N, Tellmann L, Ziemons K, Shah NJ, Herzog H, Muller-Gartner HW (2001) The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies. Brain Res 892:281–292CrossRefPubMedGoogle Scholar
  23. He S, Cohen ER, Hu X (1998) Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Curr Biol 8:1215–1218PubMedGoogle Scholar
  24. Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151CrossRefPubMedGoogle Scholar
  25. Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–444PubMedGoogle Scholar
  26. Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194PubMedGoogle Scholar
  27. Ibbotson MR, Clifford CW, Mark RF (1998) Adaptation to visual motion in directional neurons of the nucleus of the optic tract. J Neurophysiol 79:1481–1493PubMedGoogle Scholar
  28. Ibbotson MR, Clifford CW, Mark RF (1999) A quadratic nonlinearity underlies direction selectivity in the nucleus of the optic tract. Vis Neurosci 16:991–1000CrossRefPubMedGoogle Scholar
  29. Ingling CR Jr, Tsou BH (1988) Spectral sensitivity for flicker and acuity criteria. J Opt Soc Am A 5:1374–1378PubMedGoogle Scholar
  30. Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A 83:2755–2757PubMedGoogle Scholar
  31. Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165CrossRefGoogle Scholar
  32. Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMedGoogle Scholar
  33. Kubová Z, Kuba M, Hubacek J, Vít F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72PubMedGoogle Scholar
  34. Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMedGoogle Scholar
  35. Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement. J Physiol (Lond) 250:347–366Google Scholar
  36. Levinson E, Sekuler R (1980) A two-dimensional analysis of direction-specific adaptation. Vision Res 20:103–107CrossRefPubMedGoogle Scholar
  37. MacKay DM, Rietveld WJ (1968) Electroencephalogram potentials evoked by accelerated visual motion. Nature 217:677–678PubMedGoogle Scholar
  38. Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential evoked by motion. Acta Neurobiol Exp 48:239–249Google Scholar
  39. Müller R, Göpfert E, Hartwig M (1985) VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Cortex des Menschen. Z EEG-EMG 16:75–80Google Scholar
  40. Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Cogn Brain Res 8:95–105CrossRefGoogle Scholar
  41. Odom JV, De Smedt E, Van Malderen L, Spileers W (1998) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333CrossRefPubMedGoogle Scholar
  42. Raymond JE (1993) Movement direction analysers: independence and bandwidth. Vision Res 33:767–775CrossRefPubMedGoogle Scholar
  43. Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 36:2579–2586Google Scholar
  44. Schieting S, Spillmann L (1987) Flicker adaptation in the peripheral retina. Vision Res 27:277–284CrossRefPubMedGoogle Scholar
  45. Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346PubMedGoogle Scholar
  46. Snowden RJ, Ullrich D, Bach M (1995) Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus. Vision Res 35:1365–1373PubMedGoogle Scholar
  47. Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370PubMedGoogle Scholar
  48. Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141PubMedGoogle Scholar
  49. Treue S, Hol K, Rauber HJ (2000) Seeing multiple directions of motion-physiology and psychophysics. Nat Neurosci 3:270–276CrossRefPubMedGoogle Scholar
  50. World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045PubMedGoogle Scholar
  51. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMedGoogle Scholar
  52. Zele AJ, Vingrys AJ (2000) Flicker adaptation can be explained by probability summation between ON- and OFF-mechanisms. Clin Exp Ophthalmol 28:227–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Elektrophysiologisches LaborUniversitäts-AugenklinikFreiburgGermany

Personalised recommendations