Communications in Mathematical Physics

, Volume 221, Issue 1, pp 27–56

How to Prove Dynamical Localization

  • Serguei Tcheremchantsev

DOI: 10.1007/s002200100460

Cite this article as:
Tcheremchantsev, S. Commun. Math. Phys. (2001) 221: 27. doi:10.1007/s002200100460


Let H be a self-adjoint operator on l2(Zd) or L2(Rd) with pure point spectrum on some interval I. We establish general necessary and sufficient conditions for dynamical localization for a given vector and on the interval of energies I. The sufficient conditions we obtain improve the existing ones such as SULE or WULE and can be useful in applications.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Serguei Tcheremchantsev
    • 1
  1. 1.MAPMO-CNRS, Département des Mathématiques, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France. e-mail: serguei.tcherem@labomath.univ-orleans.frFR

Personalised recommendations