Communications in Mathematical Physics

, Volume 207, Issue 1, pp 173–195

Normal Forms and Quantization Formulae

  • Dario Bambusi
  • Sandro Graffi
  • Thierry Paul

Abstract:

We consider the Schrödinger operator \(\), where \(\) as \(\), is Gevrey of order \(\) and has a unique non-degenerate minimum. A quantization formula up to an error of order \(\) is obtained for all eigenvalues of Q lying in any interval \(\), with a>1 and 0<b<1 explicitly determined and c>0. For eigenvalues in \(\), 0<δ<1, the error is of order\(\) . The proof is based upon uniform Nekhoroshev estimates on the quantum normal form constructed quantizing the Lie transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Dario Bambusi
    • 1
  • Sandro Graffi
    • 2
  • Thierry Paul
    • 3
  1. 1.Dipartimento di Matematica, Università di Milano, 20133 Milano, Italy. E-mail: bambusi@mat.unimi.itIT
  2. 2.Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italy. E-mail: graffi@dm.unibo.itIT
  3. 3.Ceremade, Université de Paris-IX, 75776 Paris, France. E-mail: paulth@ceremade.dauphine.frFR

Personalised recommendations