Communications in Mathematical Physics

, Volume 195, Issue 3, pp 643–650

On the Laplace Operator Penalized by Mean Curvature

  • Evans M. Harrell II
  • Michael Loss
Article

Abstract:

Let h = Σj=1d κj, where the κj are the principal curvatures of a d-dimensional hypersurface immersed in Rd+1, and let −Δ be the corresponding Laplace–Beltrami operator. We prove that the second eigenvalue of \( - \Delta - \frac{1}{d}{h^2}\) is strictly negative unless the surface is a sphere, in which case the second eigenvalue is zero. In particular this proves conjectures of Alikakos and Fusco.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Evans M. Harrell II
    • 1
  • Michael Loss
    • 1
  1. 1.School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332-0160, USA.¶E-mail: harrell@math.gatech.edu; loss@math.gatech.eduUSA

Personalised recommendations