Advertisement

A Bethe Ansatz Type Formula for the Superconformal Index

  • Francesco BeniniEmail author
  • Paolo Milan
Article
  • 22 Downloads

Abstract

Inspired by recent work by Closset, Kim, and Willett, we derive a new formula for the superconformal (or supersymmetric) index of 4D \({\mathcal {N}}=1\) theories. Such a formula is a finite sum, over the solution set of certain transcendental equations that we dub Bethe Ansatz Equations, of a function evaluated at those solutions.

Notes

Acknowledgements

F.B. is supported in part by the MIUR-SIR Grant RBSI1471GJ “Quantum Field Theories at Strong Coupling: Exact Computations and Applications”.

References

  1. 1.
    Romelsberger, C.: Counting chiral primaries in \({\cal{N}}=1\), \(d{=}4\) superconformal field theories. Nucl. Phys. B 747, 329–353 (2006). arXiv:hep-th/0510060 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007). arXiv:hep-th/0510251 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bhattacharya, J., Bhattacharyya, S., Minwalla, S., Raju, S.: Indices for superconformal field theories in 3,5 and 6 dimensions. JHEP 02, 064 (2008). arXiv:0801.1435 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Pestun, V., et al.: Localization techniques in quantum field theories. J. Phys. A 50, 440301 (2017). arXiv:1608.02952 [hep-th]MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dolan, F.A., Osborn, H.: Applications of the superconformal index for protected operators and \(q\)-hypergeometric identities to \(\cal{N}{=}1\) dual theories. Nucl. Phys. B 818, 137–178 (2009). arXiv:0801.4947 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Closset, C., Kim, H., Willett, B.: \(\cal{N}{=}1\) supersymmetric indices and the four-dimensional A-model. JHEP 08, 090 (2017). arXiv:1707.05774 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Closset, C., Kim, H., Willett, B.: Seifert fibering operators in 3d \(\cal{N}{=}2\) theories. JHEP 11, 004 (2018). arXiv:1807.02328 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Benini, F., Milan, P.: Black holes in 4d \({\cal{N}}=4\) Super-Yang–Mills. arXiv:1812.09613 [hep-th]
  9. 9.
    Cabo-Bizet, A., Cassani, D., Martelli, D., Murthy, S.: Microscopic origin of the Bekenstein–Hawking entropy of supersymmetric AdS\(_5\) black holes. JHEP 10, 062 (2019). arXiv:1810.11442 [hep-th]ADSCrossRefGoogle Scholar
  10. 10.
    Choi, S., Kim, J., Kim, S., Nahmgoong, J.: Large AdS black holes from QFT. arXiv:1810.12067 [hep-th]
  11. 11.
    Benini, F., Zaffaroni, A.: A topologically twisted index for three-dimensional supersymmetric theories. JHEP 07, 127 (2015). arXiv:1504.03698 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Benini, F., Hristov, K., Zaffaroni, A.: Black hole microstates in AdS\(_{4}\) from supersymmetric localization. JHEP 05, 054 (2016). arXiv:1511.04085 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Benini, F., Zaffaroni, A.: Supersymmetric partition functions on Riemann surfaces. Proc. Symp. Pure Math. 96, 13–46 (2017). arXiv:1605.06120 [hep-th]MathSciNetzbMATHGoogle Scholar
  14. 14.
    Benini, F., Hristov, K., Zaffaroni, A.: Exact microstate counting for dyonic black holes in AdS\(_4\). Phys. Lett. B 771, 462–466 (2017). arXiv:1608.07294 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    Gutowski, J.B., Reall, H.S.: Supersymmetric AdS\(_5\) black holes. JHEP 02, 006 (2004). arXiv:hep-th/0401042 [hep-th]ADSCrossRefGoogle Scholar
  16. 16.
    Gutowski, J.B., Reall, H.S.: General supersymmetric AdS\(_5\) black holes. JHEP 04, 048 (2004). arXiv:hep-th/0401129 [hep-th]ADSCrossRefGoogle Scholar
  17. 17.
    Chong, Z.W., Cvetic, M., Lu, H., Pope, C.N.: General non-extremal rotating black holes in minimal five-dimensional gauged supergravity. Phys. Rev. Lett. 95, 161301 (2005). arXiv:hep-th/0506029 [hep-th]ADSCrossRefGoogle Scholar
  18. 18.
    Kunduri, H.K., Lucietti, J., Reall, H.S.: Supersymmetric multi-charge AdS\(_5\) black holes. JHEP 04, 036 (2006). arXiv:hep-th/0601156 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Benini, F., Cremonesi, S.: Partition functions of \(\cal{N}{=}(2,2)\) gauge theories on S\(^{2}\) and vortices. Commun. Math. Phys. 334, 1483–1527 (2015). arXiv:1206.2356 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Benini, F., Peelaers, W.: Higgs branch localization in three dimensions. JHEP 05, 030 (2014). arXiv:1312.6078 [hep-th]ADSCrossRefGoogle Scholar
  21. 21.
    Closset, C., Kim, H.: Comments on twisted indices in 3d supersymmetric gauge theories. JHEP 08, 059 (2016). arXiv:1605.06531 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Closset, C., Kim, H., Willett, B.: Supersymmetric partition functions and the three-dimensional A-twist. JHEP 03, 074 (2017). arXiv:1701.03171 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Assel, B., Cassani, D., Di Pietro, L., Komargodski, Z., Lorenzen, J., Martelli, D.: The Casimir energy in curved space and its supersymmetric counterpart. JHEP 07, 043 (2015). arXiv:1503.05537 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Bobev, N., Bullimore, M., Kim, H.-C.: Supersymmetric Casimir energy and the anomaly polynomial. JHEP 09, 142 (2015). arXiv:1507.08553 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Nekrasov, N.A., Shatashvili, S.L.: Bethe/gauge correspondence on curved spaces. JHEP 01, 100 (2015). arXiv:1405.6046 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253 (1982)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Sundborg, B.: The Hagedorn transition, deconfinement and \({\cal{N}}=4\) SYM theory. Nucl. Phys. B 573, 349–363 (2000). arXiv:hep-th/9908001 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Aharony, O., Marsano, J., Minwalla, S., Papadodimas, K., Van Raamsdonk, M.: The Hagedorn/deconfinement phase transition in weakly coupled large \(N\) gauge theories. Adv. Theor. Math. Phys. 8, 603–696 (2004). arXiv:hep-th/0310285 [hep-th]MathSciNetCrossRefGoogle Scholar
  29. 29.
    Benvenuti, S., Feng, B., Hanany, A., He, Y.-H.: Counting BPS operators in gauge theories: quivers, syzygies and plethystics. JHEP 11, 050 (2007). arXiv:hep-th/0608050 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012). arXiv:0712.2824 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Closset, C., Shamir, I.: The \(\cal{N}{=}1\) chiral multiplet on \(T^2\times S^2\) and supersymmetric localization. JHEP 03, 040 (2014). arXiv:1311.2430 [hep-th]ADSCrossRefGoogle Scholar
  32. 32.
    Assel, B., Cassani, D., Martelli, D.: Localization on Hopf surfaces. JHEP 08, 123 (2014). arXiv:1405.5144 [hep-th]ADSCrossRefGoogle Scholar
  33. 33.
    Felder, G., Varchenko, A.: The elliptic gamma function and \(sl(3,\mathbb{Z}) < imes \mathbb{Z}^3\). Adv. Math. 156, 44 (2000). arXiv:math/9907061 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Witten, E.: An \(SU(2)\) anomaly. Phys. Lett. B 117, 324–328 (1982)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Elitzur, S., Nair, V.P.: Nonperturbative anomalies in higher dimensions. Nucl. Phys. B 243, 205 (1984)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, H., Okubo, S., Tosa, Y.: Global gauge anomalies for simple lie algebras. Phys. Rev. D 37, 2946 (1988)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.SISSATriesteItaly
  2. 2.INFN, Sezione di TriesteTriesteItaly
  3. 3.ICTPTriesteItaly

Personalised recommendations