Limit Shapes and Local Statistics for the Stochastic Six-Vertex Model
- 15 Downloads
Abstract
In this paper we consider the stochastic six-vertex model on a cylinder with arbitrary initial data. First, we show that it exhibits a limit shape in the thermodynamic limit, whose density profile is given by the entropy solution to an explicit, non-linear conservation law that was predicted by Gwa–Spohn (Phys Rev Lett 68:725–728, 1992) and by Reshetikhin–Sridhar (Commun Math Phys 363:741–765, 2018). Then, we show that the local statistics of this model around any continuity point of its limit shape are given by an infinite-volume, translation-invariant Gibbs measure of the appropriate slope.
Notes
Acknowledgements
The author heartily thanks Alexei Borodin, Ivan Corwin, and Jeffrey Kuan for enlightening discussions. The author is also grateful to the anonymous referee for helpful suggestions on an earlier draft of this manuscript. This work was partially supported by the NSF Graduate Research Fellowship under Grant Number DGE1144152 and NSF Grant DMS-1664619.
References
- 1.Aggarwal, A.: Convergence of the stochastic six-vertex model to the ASEP. Math. Phys. Anal. Geom. 20, 3 (2017)zbMATHCrossRefGoogle Scholar
- 2.Aggarwal, A.: Current fluctuations of the stationary ASEP and stochastic six-vertex model. Duke Math. J. 167, 269–384 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Aggarwal, A., Borodin, A.: Phase transitions in the ASEP and stochastic six-vertex model. Ann. Prob. 47, 613–689 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Aggarwal, A., Borodin, A., Bufetov, A.: Stochasticization of solutions to the Yang–Baxter equation. Ann. Henri Poincaré 20, 2495–2554 (2019)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 5.Andjel, E.D., Vares, M.E.: Hydrodynamic equations for attractive particle systems on \({\mathbb{Z}}\). J. Stat. Phys. 47, 265–288 (1987)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 6.Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: A constructive approach to Euler hydrodynamics for attractive processes, application to \(k\)-step exclusion. Appl. Stoch. Process 99, 1–30 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Constructive Euler Hydrodynamics for One-Dimensional Attractive Particle Systems. In: Sidoravicius, V. (ed.) Sojourns in Probability Theory and Statistical Physics III, pp. 43–89. Springer, Singapore (2019)Google Scholar
- 8.Bahadoran, C., Mountford, T.S.: Convergence and local equilibrium for the one-dimensional nonzero mean exclusion process. Probab. Theory Relat. Fields 136, 341–362 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete Orthogonal Polynomials: Asymptotics and Applications, Ann. Math. Studies, Princeton Univ. Press (2007)Google Scholar
- 10.Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process. Duke Math. J. 167, 2457–2529 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1989)zbMATHGoogle Scholar
- 12.Bazhanov, V.V.: Trigonometric solutions of triangle equations and classical Lie algebras. Phys. Lett. B 159, 321–324 (1985)ADSMathSciNetCrossRefGoogle Scholar
- 13.Benassi, A., Fouque, J.-P.: Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Prob. 15, 546–560 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Borodin, A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59, 023301 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 15.Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165, 563–624 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Borodin, A., Gorin, V.: A Stochastic Telegraph Equation From the Six-Vertex Model, To appear in Ann. Prob., preprint, arXiv:1803.09137
- 17.Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Sel. Math. 24, 751–874 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Borodin, A., Wheeler, M.: Coloured Stochastic Vertex Models and Their Spectral Theory, preprint, arXiv:1808.01866
- 19.Bukman, D.J., Shore, J.D.: The conical point in the ferroelectric six-vertex model. J. Stat. Phys. 78, 1277–1309 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 20.Chhita, S., Johansson, K.: Domino statistics of the two-periodic Aztec diamond. Adv. Math. 294, 37–149 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Chhita, S., Johansson, K., Young, B.: Asymptotic domino statistics in the Aztec diamond. Ann. Appl. Prob. 25, 1232–1278 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Cohn, H., Elkies, N., Propp, J.: Local Statistics of random domino tilings of the Aztec diamond. Duke Math. J. 85, 117–166 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14, 297–346 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Corwin, I., Dimitrov, E.: Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall–Littlewood Gibbsian line ensembles. Commun. Math. Phys. 363, 435–501 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 25.Corwin, I., Ghosal, P., Shen, H., Tsai, L.-C.: Stochastic PDE Limit of the Six Vertex Model, preprint, arXiv:1803.08120
- 26.Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343, 651–700 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 27.Corwin, I., Tsai, L.-C.: KPZ equation limit of higher-spin exclusion processes. Ann. Prob. 45, 1771–1798 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Duits, M., Kuijlaars, M.B.J.: The Two Periodic Aztec Diamond and Matrix Valued Orthogonal Polynomials, To appear In: J. Eur. Math. Soc., preprint, arXiv:1712.05636
- 30.de Gier, J., Kenyon, R., Watson, S.S.: Limit Shapes for the Asymmetric Five Vertex Model, preprint, arXiv:1812.11934
- 31.Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Gorin, V.: Bulk Universality for random Lozenge tilings near straight boundaries and for tensor products. Commun. Math. Phys. 354, 317–344 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 33.Gorin, V.: Nonintersecting paths and the Hahn orthogonal ensemble. Funct. Anal. Appl. 42, 180–197 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725–728 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 35.Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Prob. 6, 355–378 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Jayaprakash, C., Saam, W.F.: Thermal evolution of crystal shapes: the fcc crystal. Phys. Rev. B 30, 3916 (1984)ADSCrossRefGoogle Scholar
- 37.Jimbo, M.: Quantum \(R\) matrix for the generalized Toda system. Commun. Math. Phys. 102, 537–547 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 38.Johansson, K.: The Arctic Circle boundary and the Airy process. Ann. Prob. 33, 1–30 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)ADSzbMATHCrossRefGoogle Scholar
- 40.Kenyon, R.: Conformal invariance of domino tiling. Ann. Prob. 28, 759–795 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Kenyon, R.: Dominos and the Gaussian free field. Ann. Prob. 29, 1128–1137 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Kenyon, R.: Lectures on Dimers, In: Statistical Mechanics, IAS/Park City Math. Ser. 16, Am. Math. Soc., Providence, RI, 191–230 (2009)Google Scholar
- 43.Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. Henri Poincaré Probab. Stat. 33, 591–618 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 44.Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. Acta Math. 199, 263–302 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and Amoebae. Ann. Math. 163, 1019–1056 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Kipnis, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
- 47.Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge Monographs in Mathematical Physics, Cambridge University Press, Cambridge (1993)zbMATHCrossRefGoogle Scholar
- 48.Kosygina, E.: The behavior of the specific entropy in the hydrodynamical scaling limit. Ann. Prob. 29, 1086–1110 (2001)zbMATHCrossRefGoogle Scholar
- 49.Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)CrossRefGoogle Scholar
- 50.Kuan, J.: An algebraic construction of duality functions for the stochastic \({\cal{U}}_q ( A_n^{(1)})\) vertex model and its degenerations. Commun. Math. Phys. 359, 121–187 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.Kuniba, A., Mangazeev, V.V., Maruyama, S., Okado, M.: Stochastic \(R\) matrix for \(U_q (A_n^{(1)})\). Nucl. Phys. B 913, 248–277 (2016)ADSzbMATHCrossRefGoogle Scholar
- 52.Laslier, B.: Local limits of Lozenge tilings are stable under bounded boundary height perturbations. Probab. Theory Relat. Fields 173, 1243–1264 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Lieb, E.H.: Residual entropy of square ice. Phys. Rev. Lett. 162, 162–172 (1967)ADSGoogle Scholar
- 54.Liggett, T.M.: Coupling the simple exclusion process. Ann. Prob. 3, 339–356 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
- 55.Neergard, J., den Nijs, M.: Crossover scaling functions in one dimensional dynamic growth crystals. Phys. Rev. Lett. 74, 730 (1995)ADSCrossRefGoogle Scholar
- 56.Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.Palamarchuk, K., Reshetikhin, N.: The 6-vertex Model with Fixed Boundary Conditions, Proceedings of Solvay Workshop “Bethe Ansatz: 75 Years Later,” (2006)Google Scholar
- 58.Petrov, L.: Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Probab. Theory Relat. Fields 160, 429–487 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.Reshetikhin, N., Sridhar, A.: Integrability of limit shapes of the six vertex model. Commun. Math. Phys. 356, 535–565 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 60.Reshetikhin, N., Sridhar, A.: Limit shapes of the stochastic six-vertex model. Commun. Math. Phys. 363, 741–765 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 61.Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \({\mathbb{Z}}^d\). Commun. Math. Phys. 140, 417–448 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 62.Russkikh, M.: Dimers in piecewise Temperleyan domains. Commun. Math. Phys. 359, 189–222 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 63.Russkikh, M.: Dominos in Hedgehog Domains, To appear in Ann. Inst. Henri Poincaré D, preprint, arXiv:1803.10012
- 64.Seppäläinen, T.: Existence of hydrodynamics for the totally asymmetric simple \(K\)-exclusion process. Ann. Prob. 27, 361–415 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Serre, D.: Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves, Translated From the 1996 French Original by I. N. Sneddon, Cambridge University Press, Cambridge, (1999)Google Scholar
- 66.Sheffield, S.: Random Surfaces. Astérisque 304, (2005)Google Scholar
- 67.Shore, J., Bukman, D.J.: Coexistence point in the six-vertex model and the crystal shape of fcc materials. Phys. Rev. Lett. 72, 604–607 (1994)ADSCrossRefGoogle Scholar
- 68.Sutherland, B., Yang, C.N., Yang, C.P.: Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett. 19, 588–591 (1967)ADSCrossRefGoogle Scholar
- 69.Yau, H.-T.: Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22, 63–80 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 70.Zinn-Justin, P.: The Influence of Boundary Conditions in the Six-Vertex Model, preprint, arXiv:cond-mat/0205192v1