Advertisement

Mass Rigidity for Hyperbolic Manifolds

  • Lan-Hsuan HuangEmail author
  • Hyun Chul Jang
  • Daniel Martin
Article

Abstract

We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality \(p_0=\sqrt{p_1^2+\cdots + p_n^2}\) holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds (Andersson and Dahl in Ann Glob Anal Geom 16(1):1–2, 1998; Chruściel and Herzlich in Pac J Math 212(2):231–264, 2003; Min-Oo in Math Ann 285(4):527–539; 1989, Wang in J Differ Geom 57(2):273–299, 2001) or under special asymptotics (Andersson et al. in Ann. Henri Poincaré 9(1):1–33, 2008).

Notes

Acknowledgements

The project was initiated while the authors participated in the 2017 summer program on Geometry and Relativity at the Erwin Schrödinger Institute. We would like to express our sincere gratitude to the organizers Robert Beig, Piotr Chruściel, Michael Eichmair, Greg Galloway, Richard Schoen, Tim-Torben Paetz for their warm hospitality and the inspiring program. The project was partially supported by the NSF Career award DMS-1452477. L.-H. Huang was also supported by Simons Fellowship of the Simons Foundation and von Neumann Fellowship at the Institute for Advanced Study.

References

  1. 1.
    Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16(1), 1–27 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartnik, R.: Phase space for the Einstein equations. Commun. Anal. Geom. 13(5), 845–885 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chruściel, P.T., Delay, E.: Exotic hyperbolic gluings. J. Differ. Geom. 108(2), 243–293 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chruściel, P.T., Delay, E.: The hyperbolic positive energy theorem. arXiv:1901.05263 [math.DG] (2019)
  6. 6.
    Chruściel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Delay, E.: Analyse précisée d’équations semi-linéaires elliptiques sur l’espace hyperbolique et application à la courbure scalaire conforme. Bull. Soc. Math. France 125(3), 345–381 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Delay, E., Fougeirol, J.: Hilbert Manifold Structure for Asymptotically Hyperbolic Relativistic Initial Data. arXiv:1607.05616 (2016)
  9. 9.
    Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Folland, G.B.: Introduction to partial differential equations, 2nd edn. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  11. 11.
    Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and their Conformal Boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, pp. 103–121 (2005)Google Scholar
  13. 13.
    Herzlich, M.: Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds. Ann. Henri Poincaré 17(12), 3605–3617 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Huang, L.-H., Lee, D.A.: Equality in the spacetime positive mass theorem. Commun. Math. Phys. (2019).  https://doi.org/10.1007/s00220-019-03619-w CrossRefGoogle Scholar
  15. 15.
    Kanai, M.: On a differential equation characterizing a Riemannian structure of a manifold. Tokyo J. Math. 6(1), 143–151 (1983)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, J.M.: The spectrum of an asymptotically hyperbolic Einstein manifold. Commun. Anal. Geom. 3(1–2), 253–271 (1995)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Mem. Am. Math. Soc 183(864), vi+83 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285(4), 527–539 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Qing, J.: On the rigidity for conformally compact Einstein manifolds. Int. Math. Res. Not. 21, 1141–1153 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Qing, J.: On the uniqueness of AdS space-time in higher dimensions. Ann. Henri Poincaré 5(2), 245–260 (2004)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, X.: On the uniqueness of the AdS spacetime. Acta Math. Sin. (Engl. Ser.) 21(4), 917–922 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Department of MathematicsTrinity CollegeHartfordUSA

Personalised recommendations