Isospectral Flows Related to Frobenius–Stickelberger–Thiele Polynomials

  • Xiang-Ke ChangEmail author
  • Xing-Biao Hu
  • Jacek Szmigielski
  • Alexei Zhedanov


The isospectral deformations of the Frobenius–Stickelberger–Thiele (FST) polynomials introduced in Spiridonov et al. (Commun Math Phys 272:139–165, 2007) are studied. For a specific choice of the deformation of the spectral measure, one is led to an integrable lattice (FST lattice), which is indeed an isospectral flow connected with a generalized eigenvalue problem. In the second part of the paper the spectral problem used previously in the study of the modified Camassa–Holm (mCH) peakon lattice is interpreted in terms of the FST polynomials together with the associated FST polynomials, resulting in a map from the mCH peakon lattice to a negative flow of the finite FST lattice. Furthermore, it is pointed out that the degenerate case of the finite FST lattice unexpectedly maps to the interlacing peakon ODE system associated with the two-component mCH equation studied in Chang et al. (Adv Math 299:1–35, 2016).



X.C. was supported in part by the National Natural Science Foundation of China (Grant Nos. 11688101, 11731014, 11701550) and the Youth Innovation Promotion Association CAS. X.H. was supported in part by the National Natural Science Foundation of China (Grant Nos. 11931017 and 11871336). J.S. was supported in part by the Natural Sciences and Engineering Research Council of Canada. A.Z. was supported in part by the National Natural Science Foundation of China (Grant No. 11771015).


  1. 1.
    Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. Duke Math. J. 80, 215–62 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adler, M., van Moerbeke, P.: String-orthogonal polynomials, string equations, and 2-Toda symmetries. Commun. Pure Appl. Math. 50, 241–290 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adler, M., van Moerbeke, P.: Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems. Commun. Math. Phys. 207(3), 589–620 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Aitken, A.: Determinants and Matrices. Oliver and Boyd, Edinburgh (1959)zbMATHGoogle Scholar
  5. 5.
    Álvarez-Fernández, C., Mañas, M.: Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies. Adv. Math. 240, 132–193 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Álvarez-Fernández, C., Prieto, U.F., Mañas, M.: Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy. Adv. Math. 227, 1451–1525 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ariznabarreta, G., Mañas, M.: Multivariate orthogonal polynomials and integrable systems. Adv. Math. 302, 628–739 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aptekarev, A., Branquinho, A., Marcellán, F.: Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation. J. Comput. Appl. Math. 78(1), 139–160 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Baker, G., Graves-Morris, P.: Padé Approximants. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  10. 10.
    Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154(2), 229–257 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Beals, R., Sattinger, D.H., Szmigielski, J.: Peakons, strings, and the finite Toda lattice. Commun. Pure Appl. Math. 54(1), 91–106 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chang, X., Chen, X., Hu, X., Tam, H.: About several classes of bi-orthogonal polynomials and discrete integrable systems. J. Phys. A Math. Theor. 48, 015204 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chang, X., He, Y., Hu, X., Li, S.: Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Commun. Math. Phys. 364, 1069–1119 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chang, X., Hu, X., Li, S.: Degasperis–Procesi peakon dynamical system and finite Toda lattice of CKP type. Nonlinearity 31, 4746–4775 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chang, X., Hu, X., Li, S.: Moment modification, multipeakons, and nonisospectral generalizations. J. Differ. Equ. 265, 3858–3887 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chang, X., Hu, X., Li, S., Zhao, J.: An application of Pfaffians to multipeakons of the Novikov equation and the finite Toda lattice of BKP type. Adv. Math. 338, 1077–1118 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chang, X., Hu, X., Szmigielski, J.: Multipeakons of a two-component modified Camassa–Holm equation and the relation with the finite Kac–van Moerbeke lattice. Adv. Math. 299, 1–35 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chang, X., Szmigielski, J.: Lax integrability and the peakon problem for the modified Camassa–Holm equation. Commun. Math. Phys. 358(1), 295–341 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Chu, M.: Linear algebra algorithms as dynamical systems. Acta Numer. 17, 1–86 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Frobenius, G., Stickelberger, L.: Über die addition und multiplication der elliptischen functionen. J. Reine Angew. Math. 88, 146–184 (1880)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes, vol. 3. New York University, New York (2000)zbMATHGoogle Scholar
  22. 22.
    Deift, P., Nanda, T., Tomei, C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–22 (1983)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Kac, M., van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16(2), 160–169 (1975)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kharchev, S., Mironov, A., Zhedanov, A.: Faces of relativistic Toda chain. Int. J. Mod. Phys. A 12(15), 2675–2724 (1997)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Mukaihira, A., Nakamura, Y.: Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139(1), 75–94 (2002)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Nakamura, Y., Zhedanov, A.: Special solutions of the Toda chain and combinatorial numbers. J. Phys. A 37, 5849 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Nenciu, I.: Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Not. 11, 647–686 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Papageorgiou, V., Grammaticos, B., Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett. Math. Phys. 34(2), 91–101 (1995)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Peherstorfer, F., Spiridonov, V.P., Zhedanov, A.S.: Toda chain, Stieltjes function, and orthogonal polynomials. Theor. Math. Phys. 151(1), 505–528 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ragnisco, O., Bruschi, M.M.: Peakons, r-matrix and Toda lattice. Physica A 228, 150–159 (1996)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Rutishauser, H.: Der quotienten-differenzen-algorithmus. Zeitschrift für angewandte Mathematik und Physik ZAMP 5(3), 233–251 (1954)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Spiridonov, V., Tsujimoto, S., Zhedanov, A.: Integrable discrete time chains for the Frobenius–Stickelberger–Thiele polynomials. Commun. Math. Phys. 272(1), 139–165 (2007)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Spiridonov, V., Zhedanov, A.: Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey–Wilson polynomials. Methods Appl. Anal. 2(4), 369–398 (1995)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Spiridonov, V., Zhedanov, A.: Discrete-time Volterra chain and classical orthogonal polynomials. J. Phys. A Math. Theor. 30(24), 8727–8737 (1997)ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Symes, W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4, 275–280 (1982)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Thiele, T.: Interpolationsrechnung. B.G. Teubner, Leipzig (1909)zbMATHGoogle Scholar
  37. 37.
    Tsujimoto, S., Nakamura, Y., Iwasaki, M.: The discrete Lotka–Volterra system computes singular values. Inverse Problems 17, 53–58 (2001)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Vinet, L., Zhedanov, A.: An integrable chain and bi-orthogonal polynomials. Lett. Math. Phys. 46(3), 233–245 (1998)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Watkins, D., Elsner, L.: Self-similar flows. Linear Algebra Appl. 110, 213–242 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Mathematics and StatisticsUniversity of SaskatchewanSaskatoonCanada
  4. 4.School of MathematicsRenmin University of ChinaBeijingChina

Personalised recommendations