Advertisement

Wave Equations with Moving Potentials

  • Gong ChenEmail author
Article
  • 60 Downloads

Abstract

In this paper, we study the some reversed Strichartz estimates along general time-like trajectories for wave equations in \({\mathbb {R}}^{3}\). Some applications of the reversed Strichartz estimates and the structure of wave operators to the wave equation with one potential are also discussed. These techniques are useful to analyze the stability problem of traveling solitons.

Notes

Acknowledgements

I want to thank Marius Beceanu for many useful discussions.

References

  1. [Agm]
    Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)MathSciNetzbMATHGoogle Scholar
  2. [BecGo]
    Beceanu, M., Goldberg, M.: Strichartz estimates and maximal operators for the wave equation in \({\mathbb{R}}^{3}\). J. Funct. Anal. 266(3), 1476–1510 (2014)Google Scholar
  3. [Bou]
    Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, vol. 46. American Mathematical Society, Providence, RI (1999)Google Scholar
  4. [Bec1]
    Beceanu, M.: Structure of wave operators for a scaling-critical class of potentials. Am. J. Math. 136(2), 255–308 (2014)MathSciNetCrossRefGoogle Scholar
  5. [Bec2]
    Beceanu, M.: Personal communicationGoogle Scholar
  6. [Bec3]
    Beceanu, M.: New estimates for a time-dependent Schrödinger equation. Duke Math. J. 159(3), 417–477 (2011)MathSciNetCrossRefGoogle Scholar
  7. [B]
    Beceanu, M.: Decay estimates for the wave equation in two dimensions. J. Differ. Equ. 260(6), 5378–5420 (2016)ADSMathSciNetCrossRefGoogle Scholar
  8. [BeSch]
    Beceanu, M., Schlag, W.: Structure formulas for wave operators. Preprint (2016). arXiv:1612.07304
  9. [BS]
    Beceanu, M., Soffer, A.: The Schrödinger equation with a potential in rough motion. Comm. Partial Differ. Equ. 37(6), 969–1000 (2012)CrossRefGoogle Scholar
  10. [CRT]
    Cassani, D., Ruf, B., Tarsi, C.: Optimal Sobolev type inequalities in Lorentz spaces. Potential Anal. 39(3), 265–285 (2013)MathSciNetCrossRefGoogle Scholar
  11. [GC1]
    Chen, G.: Strichartz estimates for charge transfer models. Discrete Contin. Dyn. Syst. 37(3), 1201–1226 (2017)MathSciNetCrossRefGoogle Scholar
  12. [GC2]
    Chen, G.: Strichartz estimates for wave equations with charge transfer Hamiltonian. Preprint (2016). arXiv:1610.05226
  13. [GC3]
    Chen, G.: Multisolitons for the defocusing energy critical wave equation with potentials. Commun. Math. Phys. 364(1), 45–82 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. [CJ]
    Chen, G., Jendrej, J.: Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein–Gordon equations. arXiv:1812.07322
  15. [GV]
    Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1), 50–68 (1995)MathSciNetCrossRefGoogle Scholar
  16. [Graf]
    Graf, J.M.: Phase space analysis of the charge transfer. Model. Helv. Phys. Acta 63, 107–138 (1990)MathSciNetzbMATHGoogle Scholar
  17. [JLSX]
    Jia, H., Liu, B.P., Schlag, W., Xu, G.X.: Generic and non-generic behavior of solutions to the defocusing energy critical wave equation with potential in the radial case. Preprint (2015). arXiv:1506.04763
  18. [KT]
    Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)MathSciNetCrossRefGoogle Scholar
  19. [KM]
    Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)MathSciNetCrossRefGoogle Scholar
  20. [KS]
    Krieger, J., Schlag, W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)MathSciNetCrossRefGoogle Scholar
  21. [MNNO]
    Machihara, S., Nakamura, M., Nakanishi, K., Ozawa, T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)MathSciNetCrossRefGoogle Scholar
  22. [LSch]
    Lawrie, A., Schlag, W.: Scattering for wave maps exterior to a ball. Adv. Math. 232, 57–97 (2013)MathSciNetCrossRefGoogle Scholar
  23. [MS]
    Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis. Cambridge Studies in Advanced Mathematics, Vol. I, vol. 139. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  24. [NS]
    Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2011)CrossRefGoogle Scholar
  25. [NS2]
    Nakanishi, K., Schlag, W.: Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption. Arch. Ration. Mech. Anal. 203(3), 809–851 (2012)MathSciNetCrossRefGoogle Scholar
  26. [Oh]
    Oh, S.-J.: A reversed Strichartz estimate in \({\mathbb{R}}^{1+2}\) Google Scholar
  27. [RS]
    Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004) ADSMathSciNetCrossRefGoogle Scholar
  28. [RSS]
    Rodnianski, I., Schlag, W., Soffer, A.: Dispersive analysis of charge transfer models. Commun. Pure Appl. Math. 58(2), 149–216 (2005)MathSciNetCrossRefGoogle Scholar
  29. [RSS2]
    Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS. Preprint (2003). arXiv preprint arXiv:math/0309114
  30. [Sch]
    Schlag, W.: Dispersive Estimates for Schrödinger Operators: A Survey. Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies, vol. 163, pp. 255–285. Princeton University Press, Princeton, NJ (2007)zbMATHGoogle Scholar
  31. [Tao]
    Tao, T.: Nonlinear dispersive equations. Local and global analysis. In: CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006)Google Scholar
  32. [Tar]
    Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 479–500 (1998)MathSciNetzbMATHGoogle Scholar
  33. [Ya]
    Yajima, K.: The \(W^{k, p}\) continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe University of TorontoTorontoCanada

Personalised recommendations