Advertisement

The Information in a Wave

  • Fabio Ciolli
  • Roberto LongoEmail author
  • Giuseppe Ruzzi
Article
  • 54 Downloads

Abstract

We provide the notion of entropy for a classical Klein–Gordon real wave, that we derive as particular case of a notion entropy for a vector in a Hilbert space with respect to a real linear subspace. We then consider a localised automorphism on the Rindler spacetime, in the context of a free neutral Quantum Field Theory, that is associated with a second quantised wave, and we explicitly compute its entropy S, that turns out to be given by the entropy of the associated classical wave. Here S is defined as the relative entropy between the Rindler vacuum state and the corresponding sector state (coherent state). By \({\lambda }\)-translating the Rindler spacetime into itself along the upper null horizon, we study the behaviour of the corresponding entropy \(S({\lambda })\). In particular, we show that the QNEC inequality in the form \(\frac{d^2}{d{\lambda }^2}S({\lambda })\ge 0\) holds true for coherent states, because \(\frac{d^2}{d{\lambda }^2}S({\lambda })\) is the integral along the space horizon of a manifestly non-negative quantity, the component of the stress-energy tensor in the null upper horizon direction.

Notes

Acknowledgements

We acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

  1. 1.
    Araki, H.: Relative entropy of states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bisognano, J., Wichmann, E.: On the duality condition for a Hermitean scalar field. J. Math. Phys. 16, 985 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Brunetti, R., Guido, D., Longo, R.: Modular localization and Wigner particles. Rev. Math. Phys. 14(7 & 8), 759–786 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Casini, H., Grillo, S., Pontello, D.: Relative entropy for coherent states from Araki formula. Phys. Rev. D 99, 125020 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    Ceyhan, F., Faulkner, T.: Recovering the QNEC from the ANEC, arXiv:1812.04683
  6. 6.
    Connes, A.: Une classification des facteurs de type III. Ann. Sci. Ec. Norm. Sup. 6, 133–252 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Figliolini, F., Guido, D.: On the type of second quantization factors. Commun. Math. Phys. 218, 513–536 (2001)CrossRefGoogle Scholar
  8. 8.
    Guido, D., Longo, R.: Natural energy bounds in quantum thermodynamics. J. Operator Th. 31(2), 229–252 (1994)Google Scholar
  9. 9.
    Haag, R.: Local Quantum Physics—Fields, Particles, Algebras, 2nd edn. Springer, New York (1996)CrossRefGoogle Scholar
  10. 10.
    Hislop, P.D., Longo, R.: Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys. 84, 71–85 (1982)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hollands, S., Ishibashi, A.: News vs information. Class. Quantum Grav. 36, 195001 (2019)CrossRefGoogle Scholar
  12. 12.
    Jost, R.: The general theory of quantized fields. In: Kac, M. (ed.) Lectures in Applied Mathematics, IV edn. AMS, Providence, RI (1965)Google Scholar
  13. 13.
    Lashkari, N., Liu, H., Rajagopal, S.: Modular flow of excited states, arXiv:1811.05052v1
  14. 14.
    Longo, R.: “Lectures on Conformal Nets”, preliminary lecture notes that are available at http://www.mat.uniroma2.it/~longo/lecture-notes.html
  15. 15.
    Longo, R.: Real Hilbert subspaces, modular theory, \(SL(2,{\mathbb{R} })\) and CFT, in: “Von Neumann algebras in Sibiu”, 33-91, Theta (2008)Google Scholar
  16. 16.
    Longo, R.: Entropy distribution of localised states, Comm. Math. Phys. (in press), (DOI) https://doi.org/10.1007/s00220-019-03332-8
  17. 17.
    Longo, R.: An analogue of the Kac–Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186, 451–479 (1997)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Longo, R.: On Landauer’s principle and bound for infinite systems. Commun. Math. Phys. 363, 531–560 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Longo, R.: Entropy of coherent excitations, Lett. Math. Phys. (2019),  https://doi.org/10.1007/s11005-019-01196-6, arXiv:1901.02366 [math-ph]
  20. 20.
    Longo, R., Xu, F.: Comment on the Bekenstein bound. J. Geom. Phys. 130, 113–120 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Longo, R., Xu, F.: Relative entropy in CFT. Adv. Math. 337, 139–170 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use, Texts and Monographs in Physics. Springer-Verlag, Berlin (1993)CrossRefGoogle Scholar
  23. 23.
    Xu, F.: On relative entropy and global index, arXiv:1812.01119
  24. 24.
    Takesaki, M.: “Theory of operator algebras”, I & II, Springer-Verlag, New York-Heidelberg, (2002 & 2003)Google Scholar
  25. 25.
    Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago press, Chicago (1994)zbMATHGoogle Scholar
  26. 26.
    Witten, E.: APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory. Rev. Mod. Phys. 90, 045003 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations