Advertisement

Communications in Mathematical Physics

, Volume 371, Issue 3, pp 839–920 | Cite as

Reconstructing GKZ via Topological Recursion

  • Hiroyuki FujiEmail author
  • Kohei Iwaki
  • Masahide Manabe
  • Ikuo Satake
Article
  • 76 Downloads

Abstract

In this article, a novel description of the hypergeometric differential equation found from Gel’fand–Kapranov–Zelevinsky’s system (referred to as GKZ equation) for Givental’s J-function in the Gromov–Witten theory will be proposed. The GKZ equation involves a parameter \(\hbar \), and we will reconstruct it as a quantum curve from the classical limit \(\hbar \rightarrow 0\) via the topological recursion. In this analysis, the spectral curve (referred to as GKZ curve) plays a central role, and it can be described by the critical point set of the mirror Landau–Ginzburg potential. Our novel description is derived via the duality relations of the string theories, and various physical interpretations suggest that the GKZ equation is identified with the quantum curve for the brane partition function in the cohomological limit. As an application of our novel picture for the GKZ equation, we will discuss the Stokes phenomenon for the equivariant \({\mathbb {C}}\mathbf{P }^{1}\) model, and the wall-crossing formula for the total Stokes matrix will be examined. And as a byproduct of this analysis, we will study Dubrovin’s conjecture for this equivariant model.

Notes

Acknowledgements

The authors thank Prof.  Hiroshi Iritani who suggests his idea on the equivariant version of the Dubrovin’s conjecture. KI also thanks Dr.  Fumihiko Sanda for fruitful discussion. HF and MM thank Prof. Piotr Sułkowski for stimulating discussions and useful comments. The research of HF and IS is supported by the Grant-in-Aid for Challenging Research (Exploratory) [# 17K18781]. The research of HF is also supported by the Grant-in-Aid for Scientific Research(C) [# 17K05239], and Grant-in-Aid for Scientific Research(B) [# 16H03927] from the Japan Ministry of Education, Culture, Sports, Science and Technology, and Fund for Promotion of Academic Research from Department of Education in Kagawa University. The research of KI is supported by the Grant-in-Aid for JSPS KAKENHI KIBAN(S) [# 16H06337], Young Scientists Grant-in-Aid for (B) [# 16K17613] from the Japan Ministry of Education, Culture, Sports, Science and Technology. The work of MM is supported by the ERC Starting Grant no. 335739 “Quantum fields and knot homologies” funded by the European Research Council under the European Union’s Seventh Framework Programme. The work of MM is also supported by Max-Planck-Institut für Mathematik in Bonn.

References

  1. 1.
    Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041
  2. 2.
    Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012). arXiv:1105.0630 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Aganagic, M., Dijkgraaf, D., Klemm, A., Marino, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451 (2006). arXiv:hep-th/0312085 ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425 (2005). arXiv:hep-th/0305132 ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Aganagic, M., Yamazaki, M.: Open BPS wall crossing and M-theory. Nucl. Phys. B 834, 258 (2010). arXiv:0911.5342 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Alday, L.F., Tachikawa, Y.: Affine \(SL(2)\) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94, 87 (2010). arXiv:1005.4469 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Aoki, T., Iwaki, K., Takahashi, T.: Exact WKB analysis of Schrödinger equations with a Stokes curve of loop type. Funkcialaj Ekvacioj 62, 1–34 (2019)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Awata, H., Fuji, H., Kanno, H., Manabe, H., Yamada, Y.: Localization with a surface operator, irregular conformal blocks and open topological string. Adv. Theor. Math. Phys 16(3), 725 (2012). arXiv:1008.0574 [hep-th]MathSciNetzbMATHGoogle Scholar
  9. 9.
    Benini, F., Cremonesi, S.: Partition functions of \({{\cal{N}}=(2,2)}\) gauge theories on \(S^2\) and vortices. Commun. Math. Phys 334(3), 1483 (2015). arXiv:1206.2356 [hep-th]ADSzbMATHGoogle Scholar
  10. 10.
    Benini, F., Peelaers, W.: Higgs branch localization in three dimensions. JHEP 1405, 030 (2014). arXiv:1312.6078 [hep-th]ADSGoogle Scholar
  11. 11.
    Benini, F., Zaffaroni, A.: A topologically twisted index for three-dimensional supersymmetric theories. JHEP 1507, 127 (2015). arXiv:1504.03698 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994). arXiv:hep-th/9309140 ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Bonelli, G., Sciarappa, A., Tanzini, A., Vasko, P.: Vortex partition functions, wall crossing and equivariant Gromov–Witten invariants. Commun. Math. Phys 333(2), 717 (2015). arXiv:1307.5997 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Bonelli, G., Tanzini, A., Zhao, J.: Vertices, vortices and interacting surface operators. JHEP 1206, 178 (2012). arXiv:1102.0184 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Bouchard, V., Eynard, B.: Think globally, compute locally. JHEP 1302, 143 (2013). arXiv:1211.2302 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Bouchard, V., Eynard, B.: Reconstructing WKB from topological recursion. Journal de l’Ecole polytechnique - Mathematiques 4, 845–908 (2017). arXiv:1606.04498 [math-ph]MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bouchard, V., Hutchinson, J., Loliencar, P., Meiers, M., Rupert, M.: A generalized topological recursion for arbitrary ramification. Annales Henri Poincare 15, 143 (2014). arXiv:1208.6035 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Bouchard, V., Klemm, A., Marino, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009). arXiv:0709.1453 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Topological open strings on orbifolds. Commun. Math. Phys. 296, 589 (2010). arXiv:0807.0597 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Braverman, A.: Instanton counting via affine Lie algebras. 1. Equivariant \(J\) functions of (affine) flag manifolds and Whittaker vectors. CRM Proc. Lecture Notes 38, 113–132 (2004). arXiv:math/0401409 [math-ag]MathSciNetzbMATHGoogle Scholar
  21. 21.
    Braverman, A., Etingof, P.: Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg–Witten prepotential. Studies in Lie Theory, 61–78 (2006) arXiv:math/0409441 [math-ag]
  22. 22.
    Braverman, A., Feigin, B., Finkelberg, M., Rybnikov, L.: A finite analog of the AGT relation I: F inite \(W\)-algebras and quasimaps’ spaces. Commun. Math. Phys. 308, 457 (2011). arXiv:1008.3655 [math.AG]ADSzbMATHGoogle Scholar
  23. 23.
    Cecotti, C., Vafa, C.: On classification of N = 2 supersymmetric theories. Commun. Math. Phys. 158, 596 (1993). arXiv:hep-th/9211097 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999). arXiv:hep-th/9903053 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser Mathematics, p. 508 (1997)Google Scholar
  26. 26.
    Closset, C., Cremonesi, S., Park, D.S.: The equivariant A-twist and gauged linear sigma models on the two-sphere. JHEP 1506, 076 (2015). arXiv:1504.06308 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Coates, T., Corti, A., Iritani, H., Tseng, H.: Hodge-theoretic mirror symmetry for toric stacks. arXiv:1606.07254 [math.AG]
  28. 28.
    Coates, T., Givental, A.: Quantum Riemann-Roch, Lefschetz and Serre. Ann. Math. 165, 15–53 (2007). arXiv:math/0110142 [math.AG]MathSciNetzbMATHGoogle Scholar
  29. 29.
    Coates, T., Iritani, H., Jiang, Y.: The Crepant transformation conjecture for toric complete intersections. arXiv:1410.0024 [math.AG]
  30. 30.
    Costin, O.: Asymptotics and Borel Summability. Monographs and Surveys in Pure and Applied Mathematics, vol. 141. Chapmann and Hall/CRC, London (2008)zbMATHGoogle Scholar
  31. 31.
    Delabaere, E., Dillinger, H., Pham, F.: Résurgence de Voros et périodes des courbes hyperelliptiques. Ann. Inst. Fourier (Grenoble) 43, 163–199 (1993)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Delabaere, E., Howls, C.J.: Global asymptotics for multiple integrals with boundaries. Duke Math. J. 112, 199–264 (2002)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Dijkgraaf, R., Hollands, L., Sulkowski, P.: Quantum curves and D-modules. JHEP 0911, 047 (2009). arXiv:0810.4157 [hep-th]ADSMathSciNetGoogle Scholar
  34. 34.
    Dijkgraaf, R., Hollands, L., Sulkowski, P., Vafa, C.: Supersymmetric gauge theories, intersecting branes and free fermions. JHEP 0802, 106 (2008). arXiv:0709.4446 [hep-th]ADSMathSciNetGoogle Scholar
  35. 35.
    Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225 (2011). arXiv:1006.0977 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Dorey, N.: The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms. JHEP 9811, 005 (1998). arXiv:hep-th/9806056 ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in \(D=2\) supersymmetric gauge theories. JHEP 1305, 093 (2013). arXiv:1206.2606 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Dubrovin, B.: Geometry of 2D topological field theories. Springer Lecture Notes in Mathematics 1620, 120–348 (1996). arXiv:hep-th/9407018
  39. 39.
    Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. Extra Vol. II, 315–326 (1998)Google Scholar
  40. 40.
    Dumitrescu, O., Mulase, M.: Quantum curves for Hitchin fibrations and the Eynard–Orantin theory. Lett. Math. Phys. 104, 635 (2014). arXiv:1310.6022 [math.AG]ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Dunin-Barkowski, P., Mulase, M., Norbury, P., Popolitov, A., Shadrin, S.: Quantum spectral curve for the Gromov–Witten theory of the complex projective line. arXiv:1312.5336 [math-ph]
  42. 42.
    Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion procedure. Commun. Math. Phys. 328(2), 669–700 (2014)ADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Numer. Theor. Phys. 1, 347 (2007). arXiv:math/9901001 MathSciNetzbMATHGoogle Scholar
  44. 44.
    Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Commun. Math. Phys 337(2), 483 (2015). arXiv:1205.1103 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Fang, B.: Central charges of T-dual branes for toric varieties. arXiv:1611.05153
  46. 46.
    Fang, B., Liu, C.C.M., Treumann, D., Zaslow, E.: T-duality and homological mirror symmetry of toric varieties. Adv. Math. 229, 1873–1911 (2012). arXiv:0811.1228 [math.AG]MathSciNetzbMATHGoogle Scholar
  47. 47.
    Fang, B., Liu, C.C.M., Zong, Z.: All genus open-closed mirror symmetry for affine toric Calabi–Yau 3-orbifolds. Proc. Symp. Pure Math. 93, 1 (2015). arXiv:1310.4818 [math.AG]zbMATHGoogle Scholar
  48. 48.
    Fang, B., Liu, C.C.M., Zong, Z.: The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line. Geom. Topol. 21, 2049–2092 (2017). arXiv:1411.3557 [math.AG]MathSciNetzbMATHGoogle Scholar
  49. 49.
    Fang, B., Liu, C.C.M., Zong, Z.: On the remodeling conjecture for toric Calabi–Yau 3-orbifolds. arXiv:1604.07123 [math.AG]
  50. 50.
    Fujitsuka, M., Honda, M., Yoshida, Y.: Higgs branch localization of 3d \({\cal{N}}=2\) theories. PTEP 2014(12), 123B02 (2014). arXiv:1312.3627 [hep-th]zbMATHGoogle Scholar
  51. 51.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing in coupled 2d–4d systems. JHEP 12, 082 (2012). arXiv:1103.2598 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. Ann. Henri Poincaré 14, 1643–1731 (2013). arXiv:1204.4824 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Galkin, S., Golyshev, V., Iritani, H.: Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures. Duke Math. J 165(11), 2005–2077 (2016). arXiv:1404.6407 [math.AG]MathSciNetzbMATHGoogle Scholar
  54. 54.
    Galkin, S., Iritani, H.: Gamma conjecture via mirror symmetry. to appear in Adv. Stud. Pure Math. arXiv:1508.00719 [math.AG]
  55. 55.
    Gelfand, I.M., Graev, M.I., Zelevinsky, A.V.: Holonomic systems of equations and series of hypergeometric type. Soviet Math. Doklady 36, 5–10 (1988)MathSciNetGoogle Scholar
  56. 56.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84, 255–271 (1990)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Givental, A.: Homological geometry I. Projective hypersurfaces. Selecta Math. (N.S.) 1, 325–345 (1995)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Givental, A.: Equivariant Gromov–Witten invariants. Internat Math. Res. Notices, 613–663 (1996) arXiv:alg-geom/9603021 Google Scholar
  59. 59.
    Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A polynomial. Commun. Math. Phys. 255, 577 (2005). arXiv:hep-th/0306165 ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Gukov, S., Sulkowski, P.: A-polynomial, B-model, and quantization. JHEP 1202, 070 (2012). arXiv:1108.0002 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  61. 61.
    Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric langlands program. arXiv:hep-th/0612073
  62. 62.
    Guzzetti, D.: Stokes matrices and monodromy of the quantum cohomology of projective spaces. Commun. Math. Phys. 207, 341–383 (1999). arXiv:math/9904099 [math.AG]ADSMathSciNetzbMATHGoogle Scholar
  63. 63.
    Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47 (1982)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Hikami, K.: Generalized volume conjecture and the A-polynomials: the Neumann–Zagier potential function as a classical limit of quantum invariant. J. Geom. Phys. 57, 1895 (2007). arXiv:math/0604094 [math.QA]ADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    Honda, D., Okuda, T.: Exact results for boundaries and domain walls in 2d supersymmetric theories. JHEP 1509, 140 (2015). arXiv:1308.2217 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  66. 66.
    Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. arXiv:hep-th/0005247
  67. 67.
    Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, p. 929. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  68. 68.
    Hori, K., Romo, M.: Exact results in two-dimensional \((2,2)\) supersymmetric gauge theories with boundary. arXiv:1308.2438 [hep-th]
  69. 69.
    Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222
  70. 70.
    Iqbal, A., Kashani-Poor, A.K.: The vertex on a strip. Adv. Theor. Math. Phys 10(3), 317 (2006). arXiv:hep-th/0410174 MathSciNetzbMATHGoogle Scholar
  71. 71.
    Iqbal, A., Nekrasov, N., Okounkov, A., Vafa, C.: Quantum foam and topological strings. JHEP 0804, 011 (2008). arXiv:hep-th/0312022 ADSMathSciNetzbMATHGoogle Scholar
  72. 72.
    Iritani, H.: Quantum D-modules and equivariant Floer theory for free loop spaces. Math. Z. 252(3), 577–622 (2006). arXiv:math/0410487 [math.DG]MathSciNetzbMATHGoogle Scholar
  73. 73.
    Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009). arXiv:0903.1463 [math.AG]MathSciNetzbMATHGoogle Scholar
  74. 74.
    Iritani, H.: A mirror construction for the big equivariant quantum cohomology of toric manifolds. Math. Ann. 368(1), 279–316 (2017). arXiv:1503.02919 [math.AG]MathSciNetzbMATHGoogle Scholar
  75. 75.
    Iwaki, K., Nakanishi, T.: Exact WKB analysis and cluster algebras. J. Phys. A: Math. Theor. 47, 474009 (2014). arXiv:1401.7094 [math.CA]MathSciNetzbMATHGoogle Scholar
  76. 76.
    Iwaki, K., Takahash, A.: Stokes matrices for the quantum cohomologies of orbifold projective lines. Math. Phys. A54, 101701 (2013). arXiv:1305.5775 [math.AG]ADSMathSciNetzbMATHGoogle Scholar
  77. 77.
    Kanno, H., Tachikawa, Y.: Instanton counting with a surface operator and the chain-saw quiver. JHEP 1106, 119 (2011). arXiv:1105.0357 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  78. 78.
    Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997). arXiv:hep-th/9609239 ADSMathSciNetzbMATHGoogle Scholar
  79. 79.
    Katz, S., Mayr, P., Vafa, C.: Mirror symmetry and exact solution of 4D \(N=2\) gauge theories: 1. Adv. Theor. Math. Phys. 1, 53 (1998). arXiv:hep-th/9706110 zbMATHGoogle Scholar
  80. 80.
    Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: From Hodge theory to integrability and TQFT \({{\rm tt}}^{\ast }\)-geometry. Proceedings of Symposia on Pure Mathematics. vol. 78, pp. 87–174. American Mathematical Society, Providence, RI (2008) arXiv:0806.0107 [math.AG]
  81. 81.
    Kawai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation Theory. Translations of Mathematical Monographs 227, AMS, pp 129 (2005) (Japanese ver. 1998) (2005)Google Scholar
  82. 82.
    Koike, T., Schäfke, R.: On the Borel summability of WKB solutions of Schrödinger equations with rational potentials and its application. in preparation; also Talk given by Koike, T. in the RIMS workshop “Exact WKB analysis — Borel summability of WKB solutions” September, (2010)Google Scholar
  83. 83.
    Kozcaz, C., Pasquetti, S., Passerini, F., Wyllard, N.: Affine \(sl(N)\) conformal blocks from \({\cal{N}}=2\) \(SU(N)\) gauge theories. JHEP 1101, 045 (2011). arXiv:1008.1412 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  84. 84.
    Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces: I. Topology 32(4), 773–826 (1993)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Kronheimer, P.B., Mrowka, T.S.: Knot homology groups from instantons. J. Topol. 4(4), 835–918 (2011). arXiv:0806.1053 [math.GT]MathSciNetzbMATHGoogle Scholar
  86. 86.
    Lerche, W., Mayr, P.: On \(N=1\) mirror symmetry for open type II strings. arXiv:hep-th/0111113
  87. 87.
    Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008). arXiv:hep-th/0612127 ADSMathSciNetGoogle Scholar
  88. 88.
    Mariño, M.: Chern–Simons Theory, Matrix Models, and Topological Strings, p. 197. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
  89. 89.
    Mulase, M., Sulkowski, P.: Spectral curves and the Schrödinger equations for the Eynard–Orantin recursion. Adv. Theor. Math. Phys. 19, 955 (2015). arXiv:1210.3006 [math-ph]MathSciNetzbMATHGoogle Scholar
  90. 90.
    Nawata, S.: Givental J-functions, quantum integrable systems, AGT relation with surface operator. Adv. Theor. Math. Phys. 19, 1277 (2015). arXiv:1408.4132 [hep-th]MathSciNetzbMATHGoogle Scholar
  91. 91.
    Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000).  https://doi.org/10.1016/S0550-3213(00)00118-8. arXiv:hep-th/9912123 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Peelaers, W.: Higgs branch localization of \({\cal{N}}=1\) theories on \(S^3\times S^1\). JHEP 1408, 060 (2014). arXiv:1403.2711 [hep-th]ADSGoogle Scholar
  93. 93.
    Saito, K.: Period mapping associated to a primitive form. Publ. RIMS 19, 1231–1264 (1983)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Sanda, F., Shamoto, Y.: An analogue of Dubrovin’s conjecture. arXiv:1705.05989 [math.AG]
  95. 95.
    Shadchin, S.: On F-term contribution to effective action. JHEP 0708, 052 (2007). arXiv:hep-th/0611278 ADSMathSciNetzbMATHGoogle Scholar
  96. 96.
    Sugishita, S., Terashima, S.: Exact results in supersymmetric field theories on manifolds with boundaries. JHEP 1311, 021 (2013). arXiv:1308.1973 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  97. 97.
    Takei, Y.: WKB analysis and Stokes geometry of differential equations. RIMS preprint 1848, March (2016)Google Scholar
  98. 98.
    Ueda, K.: Stokes matrices for the quantum cohomologies of Grassmannians. Int. Math. Res. Notices 34, 2075–2086 (2005). arXiv:math/0503355 [math.AG]MathSciNetzbMATHGoogle Scholar
  99. 99.
    Ueda, K.: Stokes matrix for the quantum cohomology of cubic surfaces. arXiv:math.AG/0505350
  100. 100.
    Ueda, K., Yoshida, Y.: Equivariant A-twisted GLSM and Gromov–Witten invariants of CY 3-folds in Grassmannians. arXiv:1602.02487 [hep-th]
  101. 101.
    Voros, A.: The return of the quartic oscillator. The complex WKB method. Ann. Inst. Henri Poincaré 39, 211–338 (1983)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Witten, E.: Phases of \(N=2\) theories in two-dimensions. Nucl. Phys. B 403, 159 (1993) AMS/IP Stud. Adv. Math. 1, 143 (1996). arxiv:hep-th/9301042
  103. 103.
    Yoshida, Y.: Localization of vortex partition functions in \({\cal{N}}=(2,2)\) super Yang–Mills theory. arXiv:1101.0872 [hep-th]
  104. 104.
    Yoshida, Y.: Factorization of 4d \({\cal{N}}=1\) superconformal index. arXiv:1403.0891 [hep-th]
  105. 105.
    Zhou, J.: Local mirror symmetry for the topological vertex. arXiv:0911.2343 [math.AG]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of EducationKagawa UniversityTakamatsuJapan
  2. 2.QGM, Department of MathematicsAarhus UniversityAarhus CDenmark
  3. 3.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  4. 4.Faculty of PhysicsUniversity of WarsawWarsawPoland
  5. 5.Max-Planck-Institut für MathematikBonnGermany

Personalised recommendations