Reconstructing GKZ via Topological Recursion
- 76 Downloads
Abstract
In this article, a novel description of the hypergeometric differential equation found from Gel’fand–Kapranov–Zelevinsky’s system (referred to as GKZ equation) for Givental’s J-function in the Gromov–Witten theory will be proposed. The GKZ equation involves a parameter \(\hbar \), and we will reconstruct it as a quantum curve from the classical limit \(\hbar \rightarrow 0\) via the topological recursion. In this analysis, the spectral curve (referred to as GKZ curve) plays a central role, and it can be described by the critical point set of the mirror Landau–Ginzburg potential. Our novel description is derived via the duality relations of the string theories, and various physical interpretations suggest that the GKZ equation is identified with the quantum curve for the brane partition function in the cohomological limit. As an application of our novel picture for the GKZ equation, we will discuss the Stokes phenomenon for the equivariant \({\mathbb {C}}\mathbf{P }^{1}\) model, and the wall-crossing formula for the total Stokes matrix will be examined. And as a byproduct of this analysis, we will study Dubrovin’s conjecture for this equivariant model.
Notes
Acknowledgements
The authors thank Prof. Hiroshi Iritani who suggests his idea on the equivariant version of the Dubrovin’s conjecture. KI also thanks Dr. Fumihiko Sanda for fruitful discussion. HF and MM thank Prof. Piotr Sułkowski for stimulating discussions and useful comments. The research of HF and IS is supported by the Grant-in-Aid for Challenging Research (Exploratory) [# 17K18781]. The research of HF is also supported by the Grant-in-Aid for Scientific Research(C) [# 17K05239], and Grant-in-Aid for Scientific Research(B) [# 16H03927] from the Japan Ministry of Education, Culture, Sports, Science and Technology, and Fund for Promotion of Academic Research from Department of Education in Kagawa University. The research of KI is supported by the Grant-in-Aid for JSPS KAKENHI KIBAN(S) [# 16H06337], Young Scientists Grant-in-Aid for (B) [# 16K17613] from the Japan Ministry of Education, Culture, Sports, Science and Technology. The work of MM is supported by the ERC Starting Grant no. 335739 “Quantum fields and knot homologies” funded by the European Research Council under the European Union’s Seventh Framework Programme. The work of MM is also supported by Max-Planck-Institut für Mathematik in Bonn.
References
- 1.Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041
- 2.Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012). arXiv:1105.0630 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 3.Aganagic, M., Dijkgraaf, D., Klemm, A., Marino, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451 (2006). arXiv:hep-th/0312085 ADSMathSciNetzbMATHGoogle Scholar
- 4.Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425 (2005). arXiv:hep-th/0305132 ADSMathSciNetzbMATHGoogle Scholar
- 5.Aganagic, M., Yamazaki, M.: Open BPS wall crossing and M-theory. Nucl. Phys. B 834, 258 (2010). arXiv:0911.5342 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 6.Alday, L.F., Tachikawa, Y.: Affine \(SL(2)\) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94, 87 (2010). arXiv:1005.4469 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 7.Aoki, T., Iwaki, K., Takahashi, T.: Exact WKB analysis of Schrödinger equations with a Stokes curve of loop type. Funkcialaj Ekvacioj 62, 1–34 (2019)MathSciNetzbMATHGoogle Scholar
- 8.Awata, H., Fuji, H., Kanno, H., Manabe, H., Yamada, Y.: Localization with a surface operator, irregular conformal blocks and open topological string. Adv. Theor. Math. Phys 16(3), 725 (2012). arXiv:1008.0574 [hep-th]MathSciNetzbMATHGoogle Scholar
- 9.Benini, F., Cremonesi, S.: Partition functions of \({{\cal{N}}=(2,2)}\) gauge theories on \(S^2\) and vortices. Commun. Math. Phys 334(3), 1483 (2015). arXiv:1206.2356 [hep-th]ADSzbMATHGoogle Scholar
- 10.Benini, F., Peelaers, W.: Higgs branch localization in three dimensions. JHEP 1405, 030 (2014). arXiv:1312.6078 [hep-th]ADSGoogle Scholar
- 11.Benini, F., Zaffaroni, A.: A topologically twisted index for three-dimensional supersymmetric theories. JHEP 1507, 127 (2015). arXiv:1504.03698 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 12.Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994). arXiv:hep-th/9309140 ADSMathSciNetzbMATHGoogle Scholar
- 13.Bonelli, G., Sciarappa, A., Tanzini, A., Vasko, P.: Vortex partition functions, wall crossing and equivariant Gromov–Witten invariants. Commun. Math. Phys 333(2), 717 (2015). arXiv:1307.5997 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 14.Bonelli, G., Tanzini, A., Zhao, J.: Vertices, vortices and interacting surface operators. JHEP 1206, 178 (2012). arXiv:1102.0184 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 15.Bouchard, V., Eynard, B.: Think globally, compute locally. JHEP 1302, 143 (2013). arXiv:1211.2302 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
- 16.Bouchard, V., Eynard, B.: Reconstructing WKB from topological recursion. Journal de l’Ecole polytechnique - Mathematiques 4, 845–908 (2017). arXiv:1606.04498 [math-ph]MathSciNetzbMATHGoogle Scholar
- 17.Bouchard, V., Hutchinson, J., Loliencar, P., Meiers, M., Rupert, M.: A generalized topological recursion for arbitrary ramification. Annales Henri Poincare 15, 143 (2014). arXiv:1208.6035 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
- 18.Bouchard, V., Klemm, A., Marino, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009). arXiv:0709.1453 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 19.Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Topological open strings on orbifolds. Commun. Math. Phys. 296, 589 (2010). arXiv:0807.0597 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 20.Braverman, A.: Instanton counting via affine Lie algebras. 1. Equivariant \(J\) functions of (affine) flag manifolds and Whittaker vectors. CRM Proc. Lecture Notes 38, 113–132 (2004). arXiv:math/0401409 [math-ag]MathSciNetzbMATHGoogle Scholar
- 21.Braverman, A., Etingof, P.: Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg–Witten prepotential. Studies in Lie Theory, 61–78 (2006) arXiv:math/0409441 [math-ag]
- 22.Braverman, A., Feigin, B., Finkelberg, M., Rybnikov, L.: A finite analog of the AGT relation I: F inite \(W\)-algebras and quasimaps’ spaces. Commun. Math. Phys. 308, 457 (2011). arXiv:1008.3655 [math.AG]ADSzbMATHGoogle Scholar
- 23.Cecotti, C., Vafa, C.: On classification of N = 2 supersymmetric theories. Commun. Math. Phys. 158, 596 (1993). arXiv:hep-th/9211097 MathSciNetzbMATHGoogle Scholar
- 24.Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999). arXiv:hep-th/9903053 MathSciNetzbMATHGoogle Scholar
- 25.Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser Mathematics, p. 508 (1997)Google Scholar
- 26.Closset, C., Cremonesi, S., Park, D.S.: The equivariant A-twist and gauged linear sigma models on the two-sphere. JHEP 1506, 076 (2015). arXiv:1504.06308 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 27.Coates, T., Corti, A., Iritani, H., Tseng, H.: Hodge-theoretic mirror symmetry for toric stacks. arXiv:1606.07254 [math.AG]
- 28.Coates, T., Givental, A.: Quantum Riemann-Roch, Lefschetz and Serre. Ann. Math. 165, 15–53 (2007). arXiv:math/0110142 [math.AG]MathSciNetzbMATHGoogle Scholar
- 29.Coates, T., Iritani, H., Jiang, Y.: The Crepant transformation conjecture for toric complete intersections. arXiv:1410.0024 [math.AG]
- 30.Costin, O.: Asymptotics and Borel Summability. Monographs and Surveys in Pure and Applied Mathematics, vol. 141. Chapmann and Hall/CRC, London (2008)zbMATHGoogle Scholar
- 31.Delabaere, E., Dillinger, H., Pham, F.: Résurgence de Voros et périodes des courbes hyperelliptiques. Ann. Inst. Fourier (Grenoble) 43, 163–199 (1993)MathSciNetzbMATHGoogle Scholar
- 32.Delabaere, E., Howls, C.J.: Global asymptotics for multiple integrals with boundaries. Duke Math. J. 112, 199–264 (2002)MathSciNetzbMATHGoogle Scholar
- 33.Dijkgraaf, R., Hollands, L., Sulkowski, P.: Quantum curves and D-modules. JHEP 0911, 047 (2009). arXiv:0810.4157 [hep-th]ADSMathSciNetGoogle Scholar
- 34.Dijkgraaf, R., Hollands, L., Sulkowski, P., Vafa, C.: Supersymmetric gauge theories, intersecting branes and free fermions. JHEP 0802, 106 (2008). arXiv:0709.4446 [hep-th]ADSMathSciNetGoogle Scholar
- 35.Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225 (2011). arXiv:1006.0977 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 36.Dorey, N.: The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms. JHEP 9811, 005 (1998). arXiv:hep-th/9806056 ADSMathSciNetzbMATHGoogle Scholar
- 37.Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in \(D=2\) supersymmetric gauge theories. JHEP 1305, 093 (2013). arXiv:1206.2606 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 38.Dubrovin, B.: Geometry of 2D topological field theories. Springer Lecture Notes in Mathematics 1620, 120–348 (1996). arXiv:hep-th/9407018
- 39.Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. Extra Vol. II, 315–326 (1998)Google Scholar
- 40.Dumitrescu, O., Mulase, M.: Quantum curves for Hitchin fibrations and the Eynard–Orantin theory. Lett. Math. Phys. 104, 635 (2014). arXiv:1310.6022 [math.AG]ADSMathSciNetzbMATHGoogle Scholar
- 41.Dunin-Barkowski, P., Mulase, M., Norbury, P., Popolitov, A., Shadrin, S.: Quantum spectral curve for the Gromov–Witten theory of the complex projective line. arXiv:1312.5336 [math-ph]
- 42.Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion procedure. Commun. Math. Phys. 328(2), 669–700 (2014)ADSMathSciNetzbMATHGoogle Scholar
- 43.Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Numer. Theor. Phys. 1, 347 (2007). arXiv:math/9901001 MathSciNetzbMATHGoogle Scholar
- 44.Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Commun. Math. Phys 337(2), 483 (2015). arXiv:1205.1103 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
- 45.Fang, B.: Central charges of T-dual branes for toric varieties. arXiv:1611.05153
- 46.Fang, B., Liu, C.C.M., Treumann, D., Zaslow, E.: T-duality and homological mirror symmetry of toric varieties. Adv. Math. 229, 1873–1911 (2012). arXiv:0811.1228 [math.AG]MathSciNetzbMATHGoogle Scholar
- 47.Fang, B., Liu, C.C.M., Zong, Z.: All genus open-closed mirror symmetry for affine toric Calabi–Yau 3-orbifolds. Proc. Symp. Pure Math. 93, 1 (2015). arXiv:1310.4818 [math.AG]zbMATHGoogle Scholar
- 48.Fang, B., Liu, C.C.M., Zong, Z.: The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line. Geom. Topol. 21, 2049–2092 (2017). arXiv:1411.3557 [math.AG]MathSciNetzbMATHGoogle Scholar
- 49.Fang, B., Liu, C.C.M., Zong, Z.: On the remodeling conjecture for toric Calabi–Yau 3-orbifolds. arXiv:1604.07123 [math.AG]
- 50.Fujitsuka, M., Honda, M., Yoshida, Y.: Higgs branch localization of 3d \({\cal{N}}=2\) theories. PTEP 2014(12), 123B02 (2014). arXiv:1312.3627 [hep-th]zbMATHGoogle Scholar
- 51.Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing in coupled 2d–4d systems. JHEP 12, 082 (2012). arXiv:1103.2598 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 52.Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. Ann. Henri Poincaré 14, 1643–1731 (2013). arXiv:1204.4824 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 53.Galkin, S., Golyshev, V., Iritani, H.: Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures. Duke Math. J 165(11), 2005–2077 (2016). arXiv:1404.6407 [math.AG]MathSciNetzbMATHGoogle Scholar
- 54.Galkin, S., Iritani, H.: Gamma conjecture via mirror symmetry. to appear in Adv. Stud. Pure Math. arXiv:1508.00719 [math.AG]
- 55.Gelfand, I.M., Graev, M.I., Zelevinsky, A.V.: Holonomic systems of equations and series of hypergeometric type. Soviet Math. Doklady 36, 5–10 (1988)MathSciNetGoogle Scholar
- 56.Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84, 255–271 (1990)MathSciNetzbMATHGoogle Scholar
- 57.Givental, A.: Homological geometry I. Projective hypersurfaces. Selecta Math. (N.S.) 1, 325–345 (1995)MathSciNetzbMATHGoogle Scholar
- 58.Givental, A.: Equivariant Gromov–Witten invariants. Internat Math. Res. Notices, 613–663 (1996) arXiv:alg-geom/9603021 Google Scholar
- 59.Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A polynomial. Commun. Math. Phys. 255, 577 (2005). arXiv:hep-th/0306165 ADSMathSciNetzbMATHGoogle Scholar
- 60.Gukov, S., Sulkowski, P.: A-polynomial, B-model, and quantization. JHEP 1202, 070 (2012). arXiv:1108.0002 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 61.Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric langlands program. arXiv:hep-th/0612073
- 62.Guzzetti, D.: Stokes matrices and monodromy of the quantum cohomology of projective spaces. Commun. Math. Phys. 207, 341–383 (1999). arXiv:math/9904099 [math.AG]ADSMathSciNetzbMATHGoogle Scholar
- 63.Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47 (1982)MathSciNetzbMATHGoogle Scholar
- 64.Hikami, K.: Generalized volume conjecture and the A-polynomials: the Neumann–Zagier potential function as a classical limit of quantum invariant. J. Geom. Phys. 57, 1895 (2007). arXiv:math/0604094 [math.QA]ADSMathSciNetzbMATHGoogle Scholar
- 65.Honda, D., Okuda, T.: Exact results for boundaries and domain walls in 2d supersymmetric theories. JHEP 1509, 140 (2015). arXiv:1308.2217 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 66.Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. arXiv:hep-th/0005247
- 67.Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, p. 929. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
- 68.Hori, K., Romo, M.: Exact results in two-dimensional \((2,2)\) supersymmetric gauge theories with boundary. arXiv:1308.2438 [hep-th]
- 69.Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222
- 70.Iqbal, A., Kashani-Poor, A.K.: The vertex on a strip. Adv. Theor. Math. Phys 10(3), 317 (2006). arXiv:hep-th/0410174 MathSciNetzbMATHGoogle Scholar
- 71.Iqbal, A., Nekrasov, N., Okounkov, A., Vafa, C.: Quantum foam and topological strings. JHEP 0804, 011 (2008). arXiv:hep-th/0312022 ADSMathSciNetzbMATHGoogle Scholar
- 72.Iritani, H.: Quantum D-modules and equivariant Floer theory for free loop spaces. Math. Z. 252(3), 577–622 (2006). arXiv:math/0410487 [math.DG]MathSciNetzbMATHGoogle Scholar
- 73.Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009). arXiv:0903.1463 [math.AG]MathSciNetzbMATHGoogle Scholar
- 74.Iritani, H.: A mirror construction for the big equivariant quantum cohomology of toric manifolds. Math. Ann. 368(1), 279–316 (2017). arXiv:1503.02919 [math.AG]MathSciNetzbMATHGoogle Scholar
- 75.Iwaki, K., Nakanishi, T.: Exact WKB analysis and cluster algebras. J. Phys. A: Math. Theor. 47, 474009 (2014). arXiv:1401.7094 [math.CA]MathSciNetzbMATHGoogle Scholar
- 76.Iwaki, K., Takahash, A.: Stokes matrices for the quantum cohomologies of orbifold projective lines. Math. Phys. A54, 101701 (2013). arXiv:1305.5775 [math.AG]ADSMathSciNetzbMATHGoogle Scholar
- 77.Kanno, H., Tachikawa, Y.: Instanton counting with a surface operator and the chain-saw quiver. JHEP 1106, 119 (2011). arXiv:1105.0357 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 78.Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997). arXiv:hep-th/9609239 ADSMathSciNetzbMATHGoogle Scholar
- 79.Katz, S., Mayr, P., Vafa, C.: Mirror symmetry and exact solution of 4D \(N=2\) gauge theories: 1. Adv. Theor. Math. Phys. 1, 53 (1998). arXiv:hep-th/9706110 zbMATHGoogle Scholar
- 80.Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: From Hodge theory to integrability and TQFT \({{\rm tt}}^{\ast }\)-geometry. Proceedings of Symposia on Pure Mathematics. vol. 78, pp. 87–174. American Mathematical Society, Providence, RI (2008) arXiv:0806.0107 [math.AG]
- 81.Kawai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation Theory. Translations of Mathematical Monographs 227, AMS, pp 129 (2005) (Japanese ver. 1998) (2005)Google Scholar
- 82.Koike, T., Schäfke, R.: On the Borel summability of WKB solutions of Schrödinger equations with rational potentials and its application. in preparation; also Talk given by Koike, T. in the RIMS workshop “Exact WKB analysis — Borel summability of WKB solutions” September, (2010)Google Scholar
- 83.Kozcaz, C., Pasquetti, S., Passerini, F., Wyllard, N.: Affine \(sl(N)\) conformal blocks from \({\cal{N}}=2\) \(SU(N)\) gauge theories. JHEP 1101, 045 (2011). arXiv:1008.1412 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 84.Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces: I. Topology 32(4), 773–826 (1993)MathSciNetzbMATHGoogle Scholar
- 85.Kronheimer, P.B., Mrowka, T.S.: Knot homology groups from instantons. J. Topol. 4(4), 835–918 (2011). arXiv:0806.1053 [math.GT]MathSciNetzbMATHGoogle Scholar
- 86.Lerche, W., Mayr, P.: On \(N=1\) mirror symmetry for open type II strings. arXiv:hep-th/0111113
- 87.Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008). arXiv:hep-th/0612127 ADSMathSciNetGoogle Scholar
- 88.Mariño, M.: Chern–Simons Theory, Matrix Models, and Topological Strings, p. 197. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
- 89.Mulase, M., Sulkowski, P.: Spectral curves and the Schrödinger equations for the Eynard–Orantin recursion. Adv. Theor. Math. Phys. 19, 955 (2015). arXiv:1210.3006 [math-ph]MathSciNetzbMATHGoogle Scholar
- 90.Nawata, S.: Givental J-functions, quantum integrable systems, AGT relation with surface operator. Adv. Theor. Math. Phys. 19, 1277 (2015). arXiv:1408.4132 [hep-th]MathSciNetzbMATHGoogle Scholar
- 91.Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000). https://doi.org/10.1016/S0550-3213(00)00118-8. arXiv:hep-th/9912123 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 92.Peelaers, W.: Higgs branch localization of \({\cal{N}}=1\) theories on \(S^3\times S^1\). JHEP 1408, 060 (2014). arXiv:1403.2711 [hep-th]ADSGoogle Scholar
- 93.Saito, K.: Period mapping associated to a primitive form. Publ. RIMS 19, 1231–1264 (1983)MathSciNetzbMATHGoogle Scholar
- 94.Sanda, F., Shamoto, Y.: An analogue of Dubrovin’s conjecture. arXiv:1705.05989 [math.AG]
- 95.Shadchin, S.: On F-term contribution to effective action. JHEP 0708, 052 (2007). arXiv:hep-th/0611278 ADSMathSciNetzbMATHGoogle Scholar
- 96.Sugishita, S., Terashima, S.: Exact results in supersymmetric field theories on manifolds with boundaries. JHEP 1311, 021 (2013). arXiv:1308.1973 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 97.Takei, Y.: WKB analysis and Stokes geometry of differential equations. RIMS preprint 1848, March (2016)Google Scholar
- 98.Ueda, K.: Stokes matrices for the quantum cohomologies of Grassmannians. Int. Math. Res. Notices 34, 2075–2086 (2005). arXiv:math/0503355 [math.AG]MathSciNetzbMATHGoogle Scholar
- 99.Ueda, K.: Stokes matrix for the quantum cohomology of cubic surfaces. arXiv:math.AG/0505350
- 100.Ueda, K., Yoshida, Y.: Equivariant A-twisted GLSM and Gromov–Witten invariants of CY 3-folds in Grassmannians. arXiv:1602.02487 [hep-th]
- 101.Voros, A.: The return of the quartic oscillator. The complex WKB method. Ann. Inst. Henri Poincaré 39, 211–338 (1983)MathSciNetzbMATHGoogle Scholar
- 102.Witten, E.: Phases of \(N=2\) theories in two-dimensions. Nucl. Phys. B 403, 159 (1993) AMS/IP Stud. Adv. Math. 1, 143 (1996). arxiv:hep-th/9301042
- 103.Yoshida, Y.: Localization of vortex partition functions in \({\cal{N}}=(2,2)\) super Yang–Mills theory. arXiv:1101.0872 [hep-th]
- 104.Yoshida, Y.: Factorization of 4d \({\cal{N}}=1\) superconformal index. arXiv:1403.0891 [hep-th]
- 105.Zhou, J.: Local mirror symmetry for the topological vertex. arXiv:0911.2343 [math.AG]