Stokes Phenomenon and Yang–Baxter Equations
Article
First Online:
- 105 Downloads
Abstract
We study the Stokes phenomenon of the generalized Knizhnik–Zamolodchikov (gKZ) equations, and prove that their Stokes matrices satisfy the Yang–Baxter equations. In particular, the monodromy of the gKZ equations defines a family of braid groups representations via the Stokes matrices.
Notes
Acknowledgements
I would like to thank Anton Alekseev, Philip Boalch, Pavel Etingof, Valerio Toledano Laredo, and the referee for their useful discussions and comments on this paper. This work is partially supported by the Swiss National Science Foundation Grants P2GEP2-165118 and P300P2-174284.
References
- 1.Balser, W.: Explicit evaluation of the Stokes multipliers and central connection coefficients for certain systems of linear differential equations. Math. Nachr. 138, 131–144 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, New York (2000)zbMATHGoogle Scholar
- 3.Balser, W., Jurkat, W.B., Lutz, D.A.: Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations. J. Math. Anal. Appl. 71, 48–94 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Boalch, P.: Stokes matrices, Poisson Lie groups and Frobenius manifolds. Invent. Math. 146, 479–506 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 5.Boalch, P.: G-bundles, isomonodromy and quantum Weyl groups. Int. Math. Res. Not. 2002(22), 1129–1166 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Boalch, P.: Geometry and braiding of Stokes data; fission and wild character varieties. Ann. Math. 179, 301–365 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Costello, K., Witten, E., Yamazaki, M.: Gauge Theory and Integrability I, II. arXiv:1709.09993; arXiv:1802.01579
- 8.Drinfeld, V.: Quasi-Hopf algebras, Algebra i Analiz (6), 114–148 (1989); English translation in Leningrad Math. J. 1, 1419–1457 (1990) (in Russian) Google Scholar
- 9.Dubrovin, B.: Geometry of 2D Topological Field Theories. Lecture Notes in Mathematics, vol. 1620. Springer, Berlin (1995)Google Scholar
- 10.Etingof, P., Varchenko, A.: Dynamical Weyl groups and applications. Adv. Math. 167(1), 74–127 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Etingof, P.I., Frenkel, I.B., Kirillov, A.A.: Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations. Mathematical Surveys and Monographs, vol. 58. American Mathematical Society, Providence (1998)CrossRefzbMATHGoogle Scholar
- 12.Felder, G., Markov, Y., Tarasov, V., Varchenko, A.: Differential equations compatible with KZ equations. Math. Phys. Anal. Geom. 3, 139–177 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I. JHEP 1212, 050 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 14.Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformations of linear differential equations with rational coefficients I. Physica 2D, 306–352 (1981)ADSMathSciNetzbMATHGoogle Scholar
- 15.Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess–Zumino model in two dimensions. Nucl. Phys. B 247, 83–103 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 16.Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, I, II. J. Am. Math. Soc. 6(905–947), 949–1011 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, III, IV. J. Am. Math. Soc. 7(335–381), 383–453 (1994)CrossRefzbMATHGoogle Scholar
- 18.Malgrange, B., Ramis, J.-P.: Fonctions multisommables. Ann. Inst. Fourier (Grenoble) 42(1–2), 353–368 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Kirillov, A.N., Reshetikhin, N.Y.: q-Weyl group and a multiplicative formula for universal R-matrices. Commun. Math. Phys. 134, 421–31 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 20.Kohno, T.: Monodromy representations of braid groups and Yang–Baxter equations. Ann. Inst. Fourier 37(4), 139–160 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Toledano, V.L.: Quasi-Coxeter quasitriangular quasibialgebras and the Casimir connection. arXiv:1601.04076
- 22.Toledano, V.L., Xu, X.: Stokes phenomenon, Poisson Lie groups and quantum groups. (in preparation) Google Scholar
- 23.Varchenko, A.: Multidimensional Hypergeometric Functions and Representation Theory of Quantum Groups. Advanced Series in Mathematical Physics, vol. 21. World Scientific, River Edge (1995)Google Scholar
- 24.Xu, X.: Stokes phenomenon, Gelfand–Zeitlin systems and relative Ginzburg–Weinstein linearization. Adv. Math. 338, 237–265 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Xu, X.: Frobenius manifolds and quantum groups. arXiv:1801.00123
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019