Advertisement

Stokes Phenomenon and Yang–Baxter Equations

  • Xiaomeng XuEmail author
Article
  • 105 Downloads

Abstract

We study the Stokes phenomenon of the generalized Knizhnik–Zamolodchikov (gKZ) equations, and prove that their Stokes matrices satisfy the Yang–Baxter equations. In particular, the monodromy of the gKZ equations defines a family of braid groups representations via the Stokes matrices.

Notes

Acknowledgements

I would like to thank Anton Alekseev, Philip Boalch, Pavel Etingof, Valerio Toledano Laredo, and the referee for their useful discussions and comments on this paper. This work is partially supported by the Swiss National Science Foundation Grants P2GEP2-165118 and P300P2-174284.

References

  1. 1.
    Balser, W.: Explicit evaluation of the Stokes multipliers and central connection coefficients for certain systems of linear differential equations. Math. Nachr. 138, 131–144 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, New York (2000)zbMATHGoogle Scholar
  3. 3.
    Balser, W., Jurkat, W.B., Lutz, D.A.: Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations. J. Math. Anal. Appl. 71, 48–94 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boalch, P.: Stokes matrices, Poisson Lie groups and Frobenius manifolds. Invent. Math. 146, 479–506 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boalch, P.: G-bundles, isomonodromy and quantum Weyl groups. Int. Math. Res. Not. 2002(22), 1129–1166 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boalch, P.: Geometry and braiding of Stokes data; fission and wild character varieties. Ann. Math. 179, 301–365 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Costello, K., Witten, E., Yamazaki, M.: Gauge Theory and Integrability I, II. arXiv:1709.09993; arXiv:1802.01579
  8. 8.
    Drinfeld, V.: Quasi-Hopf algebras, Algebra i Analiz (6), 114–148 (1989); English translation in Leningrad Math. J. 1, 1419–1457 (1990) (in Russian) Google Scholar
  9. 9.
    Dubrovin, B.: Geometry of 2D Topological Field Theories. Lecture Notes in Mathematics, vol. 1620. Springer, Berlin (1995)Google Scholar
  10. 10.
    Etingof, P., Varchenko, A.: Dynamical Weyl groups and applications. Adv. Math. 167(1), 74–127 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Etingof, P.I., Frenkel, I.B., Kirillov, A.A.: Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations. Mathematical Surveys and Monographs, vol. 58. American Mathematical Society, Providence (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Felder, G., Markov, Y., Tarasov, V., Varchenko, A.: Differential equations compatible with KZ equations. Math. Phys. Anal. Geom. 3, 139–177 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I. JHEP 1212, 050 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformations of linear differential equations with rational coefficients I. Physica 2D, 306–352 (1981)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess–Zumino model in two dimensions. Nucl. Phys. B 247, 83–103 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, I, II. J. Am. Math. Soc. 6(905–947), 949–1011 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, III, IV. J. Am. Math. Soc. 7(335–381), 383–453 (1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    Malgrange, B., Ramis, J.-P.: Fonctions multisommables. Ann. Inst. Fourier (Grenoble) 42(1–2), 353–368 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kirillov, A.N., Reshetikhin, N.Y.: q-Weyl group and a multiplicative formula for universal R-matrices. Commun. Math. Phys. 134, 421–31 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kohno, T.: Monodromy representations of braid groups and Yang–Baxter equations. Ann. Inst. Fourier 37(4), 139–160 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Toledano, V.L.: Quasi-Coxeter quasitriangular quasibialgebras and the Casimir connection. arXiv:1601.04076
  22. 22.
    Toledano, V.L., Xu, X.: Stokes phenomenon, Poisson Lie groups and quantum groups. (in preparation) Google Scholar
  23. 23.
    Varchenko, A.: Multidimensional Hypergeometric Functions and Representation Theory of Quantum Groups. Advanced Series in Mathematical Physics, vol. 21. World Scientific, River Edge (1995)Google Scholar
  24. 24.
    Xu, X.: Stokes phenomenon, Gelfand–Zeitlin systems and relative Ginzburg–Weinstein linearization. Adv. Math. 338, 237–265 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, X.: Frobenius manifolds and quantum groups. arXiv:1801.00123

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Beijing International Center for Mathematical ResearchPeking UniversityBeijingChina

Personalised recommendations