Anomalies in Time-Ordered Products and Applications to the BV–BRST Formulation of Quantum Gauge Theories
- 54 Downloads
Abstract
We show that every (graded) derivation on the algebra of free quantum fields and their Wick powers in curved spacetimes gives rise to a set of anomalous Ward identities for time-ordered products, with an explicit formula for their classical limit. We study these identities for the Koszul–Tate and the full BRST differential in the BV–BRST formulation of perturbatively interacting quantum gauge theories, and clarify the relation to previous results. In particular, we show that the quantum BRST differential, the quantum antibracket and the higher-order anomalies form an \(L_\infty \) algebra. The defining relations of this algebra ensure that the gauge structure is well-defined on cohomology classes of the quantum BRST operator, i.e., observables. Furthermore, we show that one can determine contact terms such that also the interacting time-ordered products of multiple interacting fields are well defined on cohomology classes. An important technical improvement over previous treatments is the fact that all our relations hold off-shell and are independent of the concrete form of the Lagrangian, including the case of open gauge algebras.
Notes
Acknowledgements
It is a pleasure to thank Chris Fewster, Atsushi Higuchi, Stefan Hollands, Kasia Rejzner, Mojtaba Taslimi Tehrani and Jochen Zahn for discussions on (algebraic) quantum field theory, Igor Khavkine for comments on \(L_\infty \) algebras and a critical reading of the manuscript, Paweł Duch for pointing out a mistake and a simplification in the proof of Theorem 10, and the anonymous referee for a careful reading of the manuscript and for pointing out various mistakes and typos. This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 702750 “QLO-QG”.
References
- 1.Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 2.Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
- 3.Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008). arXiv:0710.5373 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 4.Planck collaboration, Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589
- 5.Planck collaboration, Ade, P.A.R..: Planck 2015 results. XVII. Constraints on primordial non-Gaussianity. Astron. Astrophys. 594, A17 (2016). arXiv:1502.01592
- 6.Planck collaboration, Ade. P.A.R., et al.: Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016). arXiv:1502.02114
- 7.Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arXiv:math-ph/0112041 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 8.Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001). arXiv:gr-qc/0103074 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 9.Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002). arXiv:gr-qc/0111108 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 10.Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). arXiv:0705.3340 MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime (updated version). arXiv:0705.3340v4
- 12.Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). arXiv:1110.5232 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 13.Rejzner, K.: Remarks on local symmetry invariance in perturbative algebraic quantum field theory. Ann. H. Poincaré 16, 205 (2015). arXiv:1301.7037 MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Dütsch, M., Boas, F.M.: The Master Ward Identity. Rev. Math. Phys. 14, 977 (2002). arXiv:hep-th/0111101 MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Dütsch, M.: Proof of perturbative gauge invariance for tree diagrams to all orders. Ann. Phys. (Leipzig) 14, 438 (2005). arXiv:hep-th/0502071 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 16.Brennecke, F., Dütsch, M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119 (2008). arXiv:0705.3160 MathSciNetCrossRefzbMATHGoogle Scholar
- 17.de Medeiros, P., Hollands, S.: Superconformal quantum field theory in curved spacetime. Class. Quantum Gravity 30, 175015 (2013). arXiv:1305.0499 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 18.Taslimi Tehrani, M.: Self-consistency of conformally coupled ABJM theory at the quantum level. JHEP 11, 153 (2017). arXiv:1709.08532 ADSMathSciNetzbMATHGoogle Scholar
- 19.Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. Commun. Math. Phys. 345, 741 (2016). arXiv:1306.1058 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 20.Brunetti, R., Fredenhagen, K., Hack, T.-P., Pinamonti, N., Rejzner, K.: Cosmological perturbation theory and quantum gravity. JHEP 08, 032 (2016). arXiv:1605.02573 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 21.Fröb, M.B.: Gauge-invariant quantum gravitational corrections to correlation functions. Class. Quantum Gravity 35, 055006 (2018). arXiv:1710.00839 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 22.Fröb, M.B., Lima, W.C.C.: Propagators for gauge-invariant observables in cosmology. Class. Quantum Gravity 35, 095010 (2018). arXiv:1711.08470 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 23.Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. In: Proceedings, Winter School in Mathematical Physics: Mathematical Aspects of Quantum Field Theory: Les Houches, France, January 29—February 3, 2012, p. 17. Springer (2015). arXiv:1208.1428. https://doi.org/10.1007/978-3-319-09949-1_2
- 24.Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. Phys. Rep. 574, 1 (2015). arXiv:1401.2026 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 25.Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.), Advances in Algebraic Quantum Field Theory, p. 125. Springer International Publishing, Cham, (2015). arXiv:1504.00586. https://doi.org/10.1007/978-3-319-21353-8_4
- 26.Fredenhagen, K., Rejzner, K.: Quantum field theory on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016). arXiv:1412.5125 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 27.Hack, T.-P.: Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21894-6 CrossRefzbMATHGoogle Scholar
- 28.Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society Publishing House, Zürich, Switzerland (2007)CrossRefzbMATHGoogle Scholar
- 29.Fröb, M.B., Taslimi Tehrani, M.: Green’s functions and Hadamard parametrices for vector and tensor fields in general linear covariant gauges. Phys. Rev. D 97, 025022 (2018). arXiv:1708.00444 ADSMathSciNetCrossRefGoogle Scholar
- 30.Hörmander, L.: The analysis of linear partial differential operators I, 2nd edn. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-61497-2 CrossRefzbMATHGoogle Scholar
- 31.Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009). arXiv:0901.2038 MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93 (2012). arXiv:1101.5112 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 33.Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space–time. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 34.Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996). arXiv:gr-qc/9510056 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 35.Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000). arXiv:math-ph/9903028 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 36.Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005). arXiv:gr-qc/0404074 MathSciNetCrossRefzbMATHGoogle Scholar
- 37.Zahn, J.: Locally covariant charged fields and background independence. Rev. Math. Phys. 27, 1550017 (2015). arXiv:1311.7661 MathSciNetCrossRefzbMATHGoogle Scholar
- 38.Hollands, S., Wald, R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123 (2003). arXiv:gr-qc/0209029 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 39.Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16, 1291 (2004). arXiv:hep-th/0403213 MathSciNetCrossRefzbMATHGoogle Scholar
- 40.Khavkine, I., Melati, A., Moretti, V.: On Wick polynomials of boson fields in locally covariant algebraic QFT. Ann. H. Poincaré 20, 929 (2019). arXiv:1710.01937 MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Dütsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219, 5 (2001). arXiv:hep-th/0001129 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 42.Achilles, R., Bonfiglioli, A.: The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin. Arch. Hist. Exact Sci. 66, 295 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 43.Dütsch, M., Fredenhagen, K.: The Master Ward Identity and generalized Schwinger–Dyson equation in classical field theory. Commun. Math. Phys. 243, 275 (2003). arXiv:hep-th/0211242 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 44.Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. H. Poincaré A19, 211 (1973)MathSciNetzbMATHGoogle Scholar
- 45.Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006). arXiv:gr-qc/0512095 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 46.Ward, J.C.: An identity in quantum electrodynamics. Phys. Rev. 78, 182 (1950)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 47.Rohrlich, F.: Quantum electrodynamics of charged particles without spin. Phys. Rev. 80, 666 (1950)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 48.Takahashi, Y.: On the generalized Ward identity. Nuovo Cim. 6, 371 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 49.Buchholz, D., D’Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 50.Buchholz, D., Verch, R.: Scaling algebras and renormalization group in algebraic quantum field theory. Rev. Math. Phys. 7, 1195 (1995). arXiv:hep-th/9501063 MathSciNetCrossRefzbMATHGoogle Scholar
- 51.Yngvason, J.: The role of type III factors in quantum field theory. Rept. Math. Phys. 55, 135 (2005). arXiv:math-ph/0411058 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 52.Sakai, S.: Derivations of \(W^*\)-algebras. Ann. Math. 83, 273 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
- 53.Kadison, R.V.: Derivations of operator algebras. Ann. Math. 83, 280 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
- 54.Becchi, C., Rouet, A., Stora, R.: Renormalization of Gauge theories. Ann. Phys. 98, 287 (1976)ADSMathSciNetCrossRefGoogle Scholar
- 55.Batalin, I., Vilkovisky, G.: Gauge algebra and quantization. Phys. Lett. B 102, 27 (1981)ADSMathSciNetCrossRefGoogle Scholar
- 56.Batalin, I., Vilkovisky, G.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567 (1983)ADSMathSciNetCrossRefGoogle Scholar
- 57.Batalin, I., Vilkovisky, G.: Erratum: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 30, 508 (1984)ADSMathSciNetCrossRefGoogle Scholar
- 58.Henneaux, M.: Lectures on the antifield-BRST formalism for gauge theories. Nucl. Phys. B Proc. Suppl. 18A, 47 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 59.Gomis, J., Paris, J., Samuel, S.: Antibracket, antifields and gauge-theory quantization. Phys. Rep. 259, 1 (1995). arXiv:hep-th/9412228 ADSMathSciNetCrossRefGoogle Scholar
- 60.Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338, 439 (2000). arXiv:hep-th/0002245 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 61.Nakanishi, N.: Covariant quantization of the electromagnetic field in the Landau gauge. Prog. Theor. Phys. 35, 1111 (1966)ADSCrossRefGoogle Scholar
- 62.Lautrup, B.: Canonical quantum electrodynamics in covariant gauges. Mat. Fys. Medd. Dan. Vid. Selsk. 35, 11 (1967)Google Scholar
- 63.Brandt, F., Henneaux, M., Wilch, A.: Global symmetries in the antifield formalism. Phys. Lett. B 387, 320 (1996). arXiv:hep-th/9606172 ADSMathSciNetCrossRefGoogle Scholar
- 64.Brandt, F., Henneaux, M., Wilch, A.: Extended antifield formalism. Nucl. Phys. B 510, 640 (1998). arXiv:hep-th/9705007 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 65.Townsend, P.K.: Covariant quantization of antisymmetric tensor gauge fields. Phys. Lett. B 88, 97 (1979)ADSMathSciNetCrossRefGoogle Scholar
- 66.Namazie, M.A., Storey, D.: On secondary and higher-generation ghosts. J. Phys. A 13, L161 (1980)ADSCrossRefGoogle Scholar
- 67.Thierry-Mieg, J.: BRS structure of the antisymmetric tensor gauge theories. Nucl. Phys. B 335, 334 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 68.Siegel, W.: Hidden ghosts. Phys. Lett. B 93, 170 (1980)ADSMathSciNetCrossRefGoogle Scholar
- 69.Kimura, T.: Counting of ghosts in quantized antisymmetric tensor gauge field of third rank. J. Phys. A 13, L353 (1980)ADSCrossRefGoogle Scholar
- 70.Kimura, T.: Quantum theory of antisymmetric higher rank tensor gauge field in higher dimensional space–time. Prog. Theor. Phys. 65, 338 (1981)ADSCrossRefGoogle Scholar
- 71.Piguet, O., Sorella, S.P.: Algebraic Renormalization: Perturbative Renormalization, Symmetries and Anomalies. Springer, Berlin (1995)zbMATHGoogle Scholar
- 72.Batalin, I.A., Vilkovisky, G.A.: Closure of the gauge algebra, generalized Lie equations and Feynman rules. Nucl. Phys. B 234, 106 (1984)ADSMathSciNetCrossRefGoogle Scholar
- 73.Batalin, I.A., Vilkovisky, G.A.: Existence theorem for gauge algebra. J. Math. Phys. 26, 172 (1985)ADSMathSciNetCrossRefGoogle Scholar
- 74.Tyutin, I.V.: Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism. arXiv:0812.0580
- 75.Taslimi Tehrani, M.: Quantum BRST charge in gauge theories in curved space-time. J. Math. Phys. 60, 012304 (2019). arXiv:1703.04148 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 76.Yang, C.-N., Mills, R.L.: Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 96, 191 (1954)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 77.Ferrara, S., Zumino, B.: Supergauge invariant Yang-Mills theories. Nucl. Phys. B 79, 413 (1974)ADSCrossRefGoogle Scholar
- 78.Salam, A., Strathdee, J.: Super-symmetry and non-Abelian gauges. Phys. Lett. B 51, 353 (1974)ADSMathSciNetCrossRefGoogle Scholar
- 79.de Wit, B., Freedman, D.Z.: Combined supersymmetric and gauge-invariant field theories. Phys. Rev. D 12, 2286 (1975)ADSMathSciNetCrossRefGoogle Scholar
- 80.Fierz, M.: Zur Fermischen Theorie des \(\beta \)-Zerfalls. Z. Physik 104, 553 (1937)ADSCrossRefzbMATHGoogle Scholar
- 81.Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
- 82.Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95 (1971)ADSMathSciNetCrossRefGoogle Scholar
- 83.Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. Ann. H. Poincaré 18, 807 (2017). arXiv:1502.02705 MathSciNetCrossRefzbMATHGoogle Scholar
- 84.Adler, S.L.: Axial-Vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969)ADSCrossRefGoogle Scholar
- 85.Bell, J.S., Jackiw, R.: A PCAC puzzle: \(\pi ^0\rightarrow \gamma \gamma \) in the \(\sigma \)-model. Nuovo Cim. A 60, 47 (1969)ADSCrossRefGoogle Scholar
- 86.Fujikawa, K.: Path-Integral measure for gauge-invariant fermion theories. Phys. Rev. Lett. 42, 1195 (1979)ADSCrossRefGoogle Scholar
- 87.Geng, C.Q., Marshak, R.E.: Uniqueness of quark and lepton representations in the standard model from the anomalies viewpoint. Phys. Rev. D 39, 693 (1989)ADSCrossRefGoogle Scholar
- 88.Minahan, J.A., Ramond, P., Warner, R.C.: Comment on anomaly cancellation in the standard model. Phys. Rev. D 41, 715 (1990)ADSCrossRefGoogle Scholar
- 89.Dütsch, M., Fredenhagen, K.: A local (perturbative) construction of observables in gauge theories: the example of QED. Commun. Math. Phys. 203, 71 (1999). arXiv:hep-th/9807078 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 90.Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087 (1993). arXiv:hep-th/9209099 MathSciNetCrossRefzbMATHGoogle Scholar
- 91.Hohm, O., Zwiebach, B.: \(L_{\infty }\) algebras and field theory. Fortsch. Phys. 65, 1700014 (2017). arXiv:1701.08824 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 92.Henneaux, M., Teitelboim, C.: Quantization of Gauge systems. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
- 93.Zahn, J.: Private communication (2018)Google Scholar
- 94.Piguet, O., Sibold, K.: The anomaly in the Slavnov identity for \(N=1\) supersymmetric Yang-Mills theories. Nucl. Phys. B 247, 484 (1984)ADSCrossRefGoogle Scholar
- 95.Brandt, F.: Extended BRST cohomology, consistent deformations and anomalies of four-dimensional supersymmetric gauge theories. JHEP 04, 035 (2003). arXiv:hep-th/0212070 ADSMathSciNetCrossRefGoogle Scholar
- 96.Junker, W., Schrohe, E.: Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical properties. Ann. H. Poincaré 3, 1113 (2002). arXiv:math-ph/0109010 MathSciNetCrossRefzbMATHGoogle Scholar
- 97.Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin-one fields in curved space-time. J. Math. Phys. 44, 4480 (2003). arXiv:gr-qc/0303106 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 98.Duch, P.: Weak adiabatic limit in quantum field theories with massless particles. Ann. H. Poincaré 19, 875 (2018). arXiv:1801.10147 MathSciNetCrossRefzbMATHGoogle Scholar